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Abstract 
Despite recent discovery in GWAS of genomic variants associated with Alzheimer's disease 
(AD), its underlying biological mechanisms are still elusive. Discovery of novel AD-associated 
genetic variants, particularly in coding regions and from APOE ε4 non-carriers, is critical for 
understanding the pathology of AD. In this study, we carried out an exome-wide association 
analysis of age-of-onset of AD with ~20,000 subjects and placed more emphasis on APOE ε4 
non-carriers. Using Cox mixed-effects models, we find that age-of-onset shows a stronger 
genetic signal than AD case-control status, capturing many known variants with stronger 
significance, and also revealing new variants. We identified two novel rare variants, 
rs56201815, a synonymous variant in ERN1, from the analysis of APOE ε4 non-carriers, and a 
missense variant rs144292455 in TACR3. In addition, we detected rs12373123, a common 
missense variant in SPPL2C in the MAPT region in APOE ε4 non-carriers. In an attempt to 
unravel their regulatory and biological functions, we found that the minor allele of rs56201815 
was associated with lower average FDG uptake across five brain regions in ADNI. Our eQTL 
analyses based on 6198 gene expression samples from ROSMAP and GTEx revealed that the 
minor allele of rs56201815 was associated with elevated expression of ERN1, a key gene 
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triggering unfolded protein response (UPR), in multiple brain regions, including posterior 
cingulate cortex and nucleus accumbens. Our cell-type-specific eQTL analysis of based on 
~80,000 single nuclei in the prefrontal cortex revealed that the protective minor allele of 
rs12373123 significantly increased expression of GRN in microglia, and was associated with 
MAPT expression in astrocytes. These findings provide novel evidence supporting the 
hypothesis of the potential involvement of the UPR to ER stress in the pathological pathway of 
AD, and also give more insights into underlying regulatory mechanisms behind the pleiotropic 
effects of rs12373123 in multiple degenerative diseases including AD and Parkinson’s disease.     
 
Keywords: rare variants, Alzheimer’s disease, age-of-onset, ERN1, APOE, MAPT  
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Introduction 
Late-onset sporadic Alzheimer's disease (AD) is a progressive neurodegenerative disorder 
accounting for 50–70% of all dementia cases in the elderly population [1]. Amyloid β-peptide 
(Aβ) was the primary component found in the neuritic plaques of AD patient brain, and multiple 
mutations in the APP gene and its related genes (PSEN1 and PSEN2) promoting Aβ production 
have been identified in familial (early-onset) AD [2–6]. These observations support a causal role 
of Aβ deposition in the etiology of AD. Familial AD is, however, much rarer than sporadic AD, 
which is highly prevalent after age 65. Recent genome-wide association studies (GWAS) have 
identified a large number of genetic variants associated with the risk of late-onset AD [7–13], 
most of which are located in genes exclusively expressed in microglia (e.g., TREM2). These 
insights suggest the involvement of microglia in the pathology of AD.  
 
Despite recent progress in understanding the biological mechanisms underlying AD, the cellular 
and molecular activities and causation in the late-onset AD of most common variants discovered 
in GWAS, including those in APOE, remain unclear. Functional links between most of these AD-
related loci and genes are still to be determined, although some microglia-related single 
nucleotide polymorphisms (SNPs) in, e.g., CD33, and the MS4A gene cluster, are shown to be 
mediated through TREM2 [14, 15]. The functional mechanisms of TREM2 in Aβ uptake by 
microglia are also complicated, and contradictory biological consequences are observed in 
mouse models (see, e.g., [16] for a review on this topic). Moreover, adding up the APOE variant 
and other nine identified top SNPs accounts for a small portion (5%) of variation of age-of-onset 
[17], suggesting that missing genetic mechanisms contribute to this complex disease. We 
expect that the discovery of additional AD-associated genetic variants will provide more insights 
into the understanding of the AD pathology.  
 
In this study, we performed an exome-wide association analysis of age-of-onset of AD, in which 
most genetic variants are rare or low frequency, using an Alzheimer's Disease Sequencing 
Project (ADSP) sample of 10,216 subjects in the discovery phase. Rare coding variants often 
show larger effect size, and their biological consequences are more explicable, but its 
association analysis is complicated by insufficient statistical power. Although the exome-wide 
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association of AD has recently been explored using AD status [18–20], our rationale is that 
more AD-related rare variants can be identified using analysis of age-of-onset of AD with a Cox 
model given emerging evidence from a previous study showing its potential advantage in terms 
of statistical power [21]. We attempted to replicate significant findings in four other studies, with 
a meta-analysis sample size of about 20,000 subjects. To understand the biological 
consequences of the identified SNPs, we explored their influence on regulatory activities and 
gene expression at tissue and single-cell levels. 
 
We further performed a separate exome-wide association analysis of the age-of-onset of AD by 
excluding the APOE ε4 carriers. The overarching goal is to identify novel variants contributing to 
AD independently of the APOE ε4 allele, the strongest single genetic risk factor for AD. Despite 
quarter Century research on the function of APOE gene [22], the primary biological role of this 
gene in AD pathogenesis remains elusive as the gene and its protein are probably involved in 
many pathways related to Aβ deposition, Aβ clearance, tau pathology, and neuroinflammation 
[23]. Our analysis is designed to provide more insights into the AD-related APOE biology.  

Results  

Description of the study sample in the discovery phase  
In the discovery phase, we carried out an exome-wide association analysis of the age-of-onset 
of AD using a whole-exome sequencing (WES) sample from the ADSP [24]. We included 
10,216 non-Hispanic white subjects (54.86% cases, 58.03% women) after filtering subjects with 
missing information about sex, AD status, or age-of-onset. The average age-of-onset of AD was 
75.4 years (Table S1). We interrogated 108,509 biallelic SNPs with a missing rate < 2% across 
the subjects and a minor allele count (MAC) > 10. To identify genetic variants associated with 
the hazards of AD, we conducted three separate analyses. In the first and second analyses, we 
included all subjects and performed ε4 allele (coded by the minor allele of rs429358) 
unconditional (first) and conditional (second) analyses as APOE ε4 is a well-known strong 
predictor of AD. That is, we tested two models, differing as to whether the copy of the APOE ε4 
SNP rs429358 was included as a covariate. In the third analysis, we only included 7185 APOE 
ε4 non-carriers. Despite this reduction of the sample size, we expect better statistical power by 
using the age-of-onset analysis. In all analyses, we included sex and a top principal component 
(PC) as covariates (we examined the top five PCs, and found that only PC2 was associated with 
AD). As the ADSP sample contains family members, all age-of-onset analyses were performed 
using Cox mixed effects models implemented in the coxmeg R package [21]. We built a genetic 
relatedness matrix (GRM) using the ADSP WES data to correct for the relatedness of the 
subjects. We found that the genomic inflation was controlled in all three analyses (λ=1.04, 1.09, 
and 1.06) (Fig. S1), comparable to those in [18] using logistic regression models 
(λ=1.006~1.087).   
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Exome-wide analysis of age-of-onset of AD in the discovery 
phase 
In the first analysis (using all subjects without the adjustment for APOE ε4), we detected four 
independent signals passing the exome-wide threshold (p=5e-07) (Fig. 1A, Table S2, Model 1). 
The most significant SNP was the APOE ε4-coding variant rs429358, having a hazard ratio 
(HR) of 4.37 (p=3.729e-508). The p-value is much more significant than that reported in the 
largest meta-analysis so far based on AD status (p=5.79e-276) [10]. This result confirms 
previous findings [25–27] that APOE ε4 is not only associated with AD status but also 
substantially decreases its age at onset (Fig. 2A). The three signals outside the APOE region 
are rs75932628 (the R47H mutation) in TREM2 (HR=2.72, p=2.04e-16), rs7982 in CLU 
(HR=0.887, p=5.98e-08), and rs2405442 in PILRA (HR=0.88, p=7.67e-08) (Fig. 1A, Table S2, 
Model 1). The beneficial association of the missense variant rs7982 in CLU was not reported in 
the previous study of AD status using the same ADSP sample [18]. We observed that the minor 
allele carriers of rs7982 had lower hazards consistently across a wide age interval (Fig. 2B). 
Although the R47H mutation in TREM2 and rs2405442 in PILRA were identified in the previous 
analysis [18], our analysis increased significance for the R47H mutation (p=2.04e-16 vs. 4.8e-
12). In addition, we observed well-known AD-associated SNPs among the top hits, including 
rs12453 in MS4A6A (p=7.08e-06), rs2296160 in CR1 (p=9.05e-06), and rs592297 in PICALM 
(p=5.25e-05) (Table S2, Model 1). 
 
In the second analysis (using all subjects with the adjustment for APOE ε4), we identified seven 
independent SNPs (p<5e-07) (Fig. 1B, Table S2, Model 2), including three aforementioned 
variants in TREM2, CLU and PILRA. Four additional variants include rs144292455 in TACR3 on 
4q24 (HR=5.53, p=5.39e-07, MAC=17), rs111033333 in USH2A 1q41 (HR=4.58, p=2.74e-07, 
MAC=19), rs199533 in NSF on 17q21.31 (HR=0.87, p=3.95e-07, minor allele frequency 
(MAF)=20.2%), and rs61981931 in CDKL1 14q21.3 (HR=0.77, p=4.57e-07, MAF=4.9%). The 
SNP rs199533 in NSF was previously reported in [18], but did not reach the genome-wide 
significance in a follow-up meta-analysis incorporating replication studies [18]. The other three 
variants are novel. This analysis also identified three variants in CST9 and STAG3 genes at the 
suggestive level of significance p<5e-06 (Table 1). 
 
In the third analysis (using only APOE ε4 non-carriers), we identified four independent 
significant SNPs (p<5e-07) (Fig. 1C, Table S2, Model 3) including the R47H mutation in TREM2 
(HR=2.87, p=7.90e-14), rs144292455 in TACR3 (HR=4.22, p=2.22e-07) and rs111033333 in 
USH2A (HR=4.89, p=4.25e-08) found in the second analysis. One novel SNP was the rare 
variant rs56201815 in ERN1 within 17q23.3 locus (HR=4.22, p=7.21e-08, MAC=29). The HRs 
of the minor allele of these SNPs were substantial and comparable to that of APOE, which is not 
surprising because rare coding variants tend to show more significant biological effects, and the 
MAF of these SNPs in the ADSP sample is merely ~0.1%, much lower than the R47H mutation 
in TREM2. In addition, nine SNPs attaining p<5e-06 were identified (Table 1).  
 
We found that the p-values of the newly identified SNPs from the Cox models were much more 
significant, particularly for the rare variants, than those from a logistic model using the same 
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ADSP sample and covariates (Fig. 1D), explaining why these SNPs were not detected in the 
previous study. We compared the p-values of well-established AD-related coding-variants in the 
ADSP WES data between the two models. We found that the Cox model produced more 
significant p-values for almost all SNPs except for the two SNPs in MS4A6A (Fig. 1D).  

Replication analyses confirm SNPs in ERN1, TACR3 and the 
MAPT region  
The variants in TREM2, CLU and PILRA, identified using the full sample in our first analysis, 
were reported by previous larger studies [10–12]. Accordingly, we focus on replication of the 
novel findings identified in the analyses conditional on APOE ε4, and using the ε4-free sample. 
We attempted to replicate associations of 12 candidate SNPs with a p-value <5e-06 in at least 
one model in the discovery phase (Table 1), including six common variants (MAF�5%) and six 
rare variants (MAF<1%). All these SNPs passed a test for the assumption of proportional 
hazards in the discovery phase (Table 1).  We further included rs2732703, an intronic variant of 
ARL17B in the MAPT region reported being associated with AD in a previous study of APOE ε4 
non-carriers [28]. This SNP is in high linkage disequilibrium (LD) with our identified coding 
variants rs199533 (r2=0.90) in NSF and rs12373123 (r2=0.93) in SPPL2C. We examined these 
SNPs in non-Hispanic white populations of LOADFS (3473 subjects, 43.4% cases, imputed 
genotypes), CHS (3262 subjects, 6.2% cases, imputed genotypes), GenADA (1588 subjects, 
50% cases, imputed genotypes), the Religious Orders Study (ROS) and the Rush Memory and 
Aging Project (MAP) cohort (1195 subjects, 45% cases, whole-genome sequencing (WGS) 
genotypes [29]) and the ADSP extension study (1147 subjects, 45.8% cases, WGS genotypes) 
(Table S1). We removed ~400 subjects from the ROSMAP WGS cohort, 572 from CHS, 318 
from LOADFS, who were already included in the ADSP sample, resulting in 681, 2690, 3155 
non-Hispanic whites, respectively. The coxmeg R package [21] was used to analyze the 
LOADFS data set with a GRM estimated from a genotype array, and the coxph function in the 
survival R package [30] was used to analyze the CHS, GenADA, ROSMAP and ADSP 
extension data sets.  
 
Meta-analysis of the results from the conditional model adjusted for APOE ε4 showed an 
improved p-value of 1.78e-09 for rs144292455 in TACR3 (MAF=0.083% in ADSP) compared to 
the ADSP sample alone (p=5.39e-08). This SNP had a p-value of 6.3e-03 when a logistic model 
instead of a Cox model was fitted, which might be a reason for not identifying this SNP by the 
previous case-control study of ADSP [18]. The other SNPs did not reach the exome-wide 
significance of 5e-07 in the meta-analysis (Table 1). Rs144292455 is a coding variant of TACR3 
resulting in a premature stop codon and, thus a shortened transcript. The minor allele of 
rs144292455 increased the risk of AD in ADSP (17 carriers, 16 cases), ROSMAP (2 carriers, 1 
case), LOADFS (9 subjects with a dosage>0.5), GenADA (1 subject with a dosage>0.5) and the 
ADSP extension study (2 carriers, 1 case), while no imputed carriers were observed in CHS 
(Table S7). The vast majority of the minor allele carriers in ADSP (16 of 17; 3 of 16 also carry 
APOE ε4 allele) had AD with an average age-of-onset of 71.03 (Fig. 2C). This age was 
substantially younger than the average age-of-onset of 75.4 years based on all AD cases. Two 
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carriers in ROSMAP were both APOE ε4 non-carriers and the AD case carried APOE ε2/ε4 
genotype. 
 
In the analysis using APOE ε4 non-carriers, five SNPs (rs56201815, rs144292455, rs12373123, 
rs1134586, and rs199533) showed smaller exome-wide significant meta-analysis p-values 
(p<5e-07) compared to those from the ADSP sample alone. Association for rs111033333 
remained at the exome-wide significance. Replication of rare variant rs111033333 was, 
however, less reliable as no minor allele carriers were observed in ROSMAP, LOADFS, CHS, or 
the ADSP extension study. The novel AD-associated SNP rs56201815 (meta-analysis p=2.10e-
12) is a synonymous variant in ERN1. rs12373123, a missense variant of SPPL2C (Table 1), is 
located in a large LD block spanning the MAPT region and it is in complete LD with multiple 
synonymous, nonsense or missense variants in CRHR1 and MAPT. In APOE ε4 non-carriers, 
the hazards of AD were consistently lower in the carriers of the minor allele of rs12373123 after 
age 70 (Fig. 2D). It had a more significant p-value (meta-analysis p=3.55e-07) than the 
previously reported SNP rs2732703 (meta-analysis p=2.74e-06) and rs199533 (meta-analysis 
p=3.63e-07), suggesting that this SNP might be more correlated with the true causal variant for 
AD in this region. The minor allele of rs12373123 was consistently associated with decreased 
risk of AD in all studies except for LOADFS. In addition, rs1134586, a common missense variant 
in EXO5, passed the exome-wide significance with a small margin (p=4.82e-07). More data 
might be needed to further validate the association of this SNP.     

Minor allele of rs56201815 in ERN1 increases the risk of AD and 
lowers glucose metabolism 
Among the aforementioned replicated SNPs, rs56201815 in ERN1 yielded the most significant 
meta-analysis p-value, and its minor allele (G) (MAF=0.15% in a non-Finnish European sample 
(Lek et al., 2016)) increased the risk of AD consistently across all studies and independently of 
the APOE ε4 allele. The HRs were nominally significant in LOADFS (p=1.97e-02) and CHS 
(p=6.66e-03). In GenADA, no carriers of the minor allele were observed. We analyzed the minor 
allele carriers in these studies in more detail. Twenty-seven (16 males) rs56201815-G carriers 
in ADSP (a total of 29 carriers in which two were excluded from the analyses because they 
transformed from control to mild cognitive impairment (MCI) during the follow-up in ADSP, and 
their AD status was unknown) were sampled from 11 cohorts including ACT, ADC, CHAP, 
MAYO, MIA, MIR, ROSMAP, VAN, ERF, FHS, and RS (Table 2). The genotypes of these 
rs56201815-G carriers passed the quality control and had high sequencing depth. Of them, 23 
subjects were diagnosed with AD and their average age-of-onset (73.5 years) was lower than 
the average age-of-onset (75.4 years) of all AD cases in ADSP (Fig. 2E). Interestingly, three of 
the four rs56201815-G carriers in the control group carried APOE ε4 allele that explained why 
this SNP was only identified in the analysis of APOE ε4 non-carriers. Indeed, we observed that 
rs56201815-G had a stronger effect on the risk of AD in APOE ε4 non-carriers (Fig. 2F, Table 
S2). In the ROSMAP WGS cohort (after excluding the duplicated subjects examined in the 
ADSP sample), we observed three rs56201815-G carriers, including one APOE ε4 carrier 
(Table 2). Two of the three carriers were diagnosed with AD, which, albeit from a small sample 
size, is much higher than the incidence of 36.7% in the non-carriers. The genotypes of all 
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carriers had high sequencing quality. In the LOADFS cohort, we observed seven subjects with a 
dosage of rs56201815-G higher than 0.5 (Table 2). One individual was followed up until age 59 
which is too young to be a useful subject for study of AD. Four out of the remaining six carriers 
had both AD and dementia, including three family members who were all diagnosed with AD 
(Table 2). This incidence (66.7%) was higher than that in non-carriers (43%). In the CHS cohort, 
we observed three subjects with a dosage of rs56201815-G higher than 0.5 (Table 2), one of 
whom (33.3%) had AD during the follow-up, higher than the incidence (6.16%) in non-carriers. 
In the ADSP extension WGS study, we observed two rs56201815-G carriers in non-Hispanic 
whites, and both were APOE ε4 non-carriers. One of the carriers was diagnosed with AD at age 
69, and the other converted to dementia during the follow-up with an unknown status of AD. 
 
The ADNI project was not included in the replication analysis because the age-of-onset of AD 
was not available. Moreover, the vast majority of the ADNI WGS sample (738 subjects) was 
MCI or control subjects, and AD cases accounted for merely 5.8%. Instead, we investigated the 
association between rs56201815 and average FDG-PET intensity, one of the most accurate 
biomarkers to predict conversion from MCI to AD and to distinguish between control, early MCI 
(EMCI), late MCI (LMCI) and AD subjects [31–35], across five brain regions of interest (ROIs) 
(left/right angular gyrus, bilateral posterior cingulate gyrus, and left/right inferior temporal gyrus). 
We observed that the average FDG uptake of the five rs56201815-G carriers (two LMCI 
subjects, one EMCI subject, and two controls) adjusted for within-subject variability, age at 
measurement, sex, and diagnosis groups (control, EMCI, LMCI and AD) was significantly lower 
than that of the homozygous subjects (Fig. 3A), suggesting that the rs56201815-G carriers had 
lower cerebral glucose metabolism and will more likely convert to advanced stages.  

rs56201815 is synonymous variant and brain-specific eQTL of 
ERN1 
As rs56201815 in ERN1 was the most significant SNP identified from the discovery and 
replication phases, we next sought to examine its biological and regulatory functions. 
rs56201815 is a synonymous coding variant, indicating that it unlikely alters amino acid 
sequence of ERN1. However, rs56201815 is located in a CTCF binding site, an open chromatin 
region in multiple cell types and an evolutionarily conserved region (Fig. 3B). Moreover, a recent 
mouse study reports that inhibition of ERN1 expression reduces amyloid precursor protein 
(APP) in cortical and hippocampal areas, and restores the learning and memory capacity of AD 
mice [36]. We, therefore, hypothesized that rs56201815 is a cis-eQTL of ERN1 in brain, and the 
detrimental effect of rs56201815 on AD is mediated by upregulating the expression of ERN1. To 
test this hypothesis, we examined the effect of rs56201815 on the expression of ERN1 using 
RNA-seq data in ROSMAP and GTEx, and microarray data in ADNI.  
 
We collected 2213 RNA-seq samples from 838 subjects in the ROSMAP cohort in three brain 
regions including dorsolateral prefrontal cortex (PFC), posterior cingulate cortex (PCC), and 
anterior caudate nucleus, among which four subjects were rs56201815-G carriers. Our 
differential expression (DE) analysis revealed that the minor allele of rs56201815 was 
associated with increased expression of ERN1 (log(fold-change (FC))=0.204, p=0.0285) in PCC 
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(Fig. 3C). We then analyzed a WGS data set of 838 healthy subjects from the GTEx project. 
The WGS data included two rs56201815-G carriers. One of them had RNA-seq data in nine 
brain tissues including amygdala, anterior cingulate cortex (ACC), hypothalamus, caudate, 
nucleus accumbens, putamen, cerebellar hemisphere, cerebellum and spinal cord. Despite the 
small sample size, our DE analyses indicated that rs56201815 was a potential eQTL of ERN1 in 
several regions in cerebrum, particularly nucleus accumbens (log(FC)=1.28, p=1e-4), and 
putamen (log(FC)=0.734, p=0.05) (Fig. 3D). In line with the result from the ROSMAP data in 
PCC, rs56201815-G was correlated, albeit not significant (log(FC)=0.35, p=0.437), with the 
expression in ACC, leading to a significant meta-analysis p-value of 0.0213 for cingulate cortex. 
In almost all regions in cerebrum, the rs56201815-G carrier had uniformly higher expression of 
ERN1 than the average (Fig. 3D, Fig. S4A).  
 
We then investigated the effects of rs56201815 on ERN1 expression in other brain regions, and 
in four non-brain tissues including sigmoid colon, lung, spleen and whole blood. The RNA-seq 
data in sigmoid colon had two rs56201815-G carriers, and one rs56201815-G carrier was 
available in the other tissues. The DE results showed no evidence of an association between 
rs56201815 and the gene expression in any of these tissues (Fig. S4A). As the number of 
rs56201815-G carriers in the GTEx project is small, we further analyzed a peripheral whole 
blood sample from the ADNI project, comprising 733 subjects having both a WGS dataset and a 
microarray gene expression dataset, three of whom were rs56201815-G carriers with high 
sequencing quality. Our DE analyses of two probes in ERN1 showed that the minor allele 
rs56201815-G was not associated with either probe (Fig. S4B).  
 
These results suggested that rs56201815 was associated with elevated expression of ERN1 in 
cerebral regions (most predominantly in PCC and several regions in basal ganglia), but not 
likely in other tissues. To examine whether its regulatory effects in the brain are mediated by a 
change of chromatin activity, we further carried out association analyses of epigenetic markers 
including DNA methylation and histone modifications in PFC. We collected an Illumina 450k 
array DNA methylation data set of 721 subjects (four rs56201815-G carriers) from a ROSMAP 
sample [37, 38]. Among 11 probes located in the region of ERN1, we found no evidence of 
significant association after adjustment for multiple testing (Table S3). The most significant 
probe (chr17:62134117), also the probe closest to rs56201815, was located in an enhancer with 
a p-value of 0.012. For histone modifications, we interrogated histone 3 lysine 9 acetylation 
(H3K9ac) peaks using a ChIP-seq data set of 632 subjects (four rs56201815-G carriers) from a 
ROSMAP sample [37, 39]. We conducted differential analyses of 26,384 broad peaks adjusted 
for fraction of reads in peaks (FRiPs), GC bias, and 10 remove unwanted variation (RUV) 
components. No significant association was found among nine broad peaks within a ±200kb 
flanking region of ERN1 after adjustment of multiple testing although eight peaks showed 
slightly increased intensity in the carriers (Table S4). The most significant association was in an 
enhancer at chr17:62,337,374-62,342,372 with a p-value of 0.043.             

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.01.28.923789doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rs12373123 is neural cell type-specific eQTL of MAPT and GRN  
Previous studies show that rs12373123 is a cis-eQTL of multiple nearby genes (e.g., MAPT, 
CRHR1, and LRRC37A) in multiple tissues including brain [28, 40–42], and shows chromatin 
interactions with these genes (Fig. 4A). But it is not clear which cell type and genes mediate its 
effect on AD. We then explored the regulatory effects of rs12373123 at a cell-type level using a 
single-nucleus RNA-seq (snRNA-seq) dataset. Cell type-specific analysis can also reduce the 
potential confounding effects originating from unobserved heterogeneous cell type proportion 
across subjects in the tissue-level analysis, and therefore produces more accurate and refined 
estimates. We performed cell type-specific eQTL analyses using 44 subjects having both 
genotype data (39 subjects from WGS and 5 subjects from a SNP array) and snRNA-seq data 
from ~80,000 cells in PFC from a ROSMAP sample. We classified cells into excitatory neurons, 
inhibitory neurons, astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells 
(OPCs) based on previous clustering results [43]. We then aggregated cells within each cell 
type and each subject.  
 
In each cell type, we interrogated 11 protein-coding genes (10 genes within a ±500kb flanking 
region and GRN, a nearby gene linked to frontotemporal lobar degeneration (FTD), a type of 
dementia). The cell type-specific eQTL analyses revealed that one or more copies of 
rs12373123-C were associated with elevated expression of ARL17B in all six brain cell types 
(p<1e-11) (Fig. 4B, Table S5). rs12373123 was also an eQTL of LRRC37A3, KANSL1, and 
CRHR1 in all cell types except for microglia (Fig. S2, Table S5). The protective allele 
rs12373123-C was associated with elevated MAPT expression in astrocytes (p=0.01) while a 
decreasing trend in OPCs (p=0.09) (Fig. 4B, Table S5). We further found that rs12373123-C, 
particularly its homozygous protective genotype, was significantly associated with increased 
expression of GRN in microglia (p=3.65e-06) (Fig. 4B, Table S5), which is a protective gene 
against dementia and is important for lysosome homeostasis in the brain [44, 45]. 
 
We also assessed the cell type-specific association between rs56201815 and the expression of 
ERN1. We observed that ERN1 was ubiquitously expressed in all brain cell types, most 
abundantly in microglia, followed by astrocytes and OPCs. As there was only one rs56201815-
G carrier among the 39 WGS subjects, and, unfortunately, its total sequencing depth was much 
lower than that of the other subjects (~10% of the average library size), we investigated three 
major abundant cell types (excitatory neurons, astrocytes, and oligodendrocytes), for which the 
carrier had a library size > 50,000. We observed that rs56201815-G was slightly correlated with 
increased expression of ERN1 in excitatory neurons, but not significant (Fig. S3).   

Gene-set analysis identifies astrocyte, microglia and amyloid-beta 
related pathways    
As aggregating signals within a gene can often increase the statistical power, in particular, for 
detecting rare coding variants, we carried out gene-based analyses using the summary 
statistics of all examined SNPs estimated from the ADSP sample. Our gene-based analyses 
using MAGMA [46] showed that TREM2 was the most significant gene associated with AD in all 
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individuals (p=1.65e-9) and in APOE ε4 non-carriers (p=2.57e-10) (Fig. S5A), consistent with 
previous results [18]. Indeed, all six exonic SNPs (rs2234256, rs2234255, rs2234253, 
rs142232675, rs143332484, rs75932628) in TREM2 were at least nominally associated with AD 
(Table S2). Its significance in APOE ε4 non-carriers was higher, suggesting that the effects of 
TREM2 on AD were independent of APOE. Besides, multiple genes in the MAPT region 
including MAPT, KANSL1, NSF, and SPPL2C were significantly (p<3.5e-06) associated with the 
risk of AD in both analyses (Fig. S5B). We also observed that CLU, TACR3, NAV2, and 
FAM186B were among the top associated genes. 
 
Our gene-set analysis using FUMA [47] based on the summary statistics from the exome-wide 
association analysis conditional on APOE ε4 detected one Gene Ontology (GO) gene set 
(positive regulation of astrocyte activation) associated with AD (Bonferroni adjusted p<0.05) 
(Fig. 5A). Other top enriched gene sets included antigen processing and presentation via MHC 
class II, amyloid-beta clearance and formation, response to endoplasmic reticulum (ER) stress, 
and microglial activation (Fig. 5A). Consistently, the gene sets related to astrocytes, microglia, 
and amyloid-beta were also among the top in the gene-set analysis using APOE ε4 non-carriers 
(Fig. 5B). Our cell type association analysis using FUMA (Watanabe et al., 2019) showed that 
microglia were associated with AD among nine major cell types in the brain (p<0.05) in the 
analysis of APOE ε4 non-carriers (Fig. 5D). No cell type was associated with AD based on the 
summary statistics from the association analysis conditional on APOE ε4 (Fig. 5C).   

Discussion 
In this study, we interrogated the associations between 108,509 exome-wide SNPs and age-of-
onset of late-onset AD using Cox models with a sample consisting of ~20,000 AD patients and 
controls. We also attempted to identify SNPs contributing to earlier onset in APOE ε4 non-
carriers alone. Most of these SNPs are rare variants. Our results not only confirm previously 
reported AD-related SNPs with much higher significance but also reveal novel genetic variants 
associated with age-of-onset of AD, particularly in APOE ε4 non-carriers.    
 
One of our major findings is a synonymous rare variant, rs56201815, in ERN1 (also known as 
IRE1). Our results showed that the minor allele of this SNP was associated with a dramatically 
higher risk of AD, particularly in APOE ε4 non-carriers. Its huge effect size unanimously 
replicated in three other cohorts, is not surprising as its MAF in the population is only ~10% of 
the rare variant rs75932628 in TREM2 according to ExAC (https://gnomad.broadinstitute.org/). 
ERN1 encodes a key protein, containing a serine/threonine-protein kinase domain and a 
ribonuclease (RNase) domain, involved in unfolded protein response (UPR) to ER stress by 
activating its downstream target XBP1 [48, 49]. Interestingly, a recent experimental study shows 
that the proportion of activated ERN1 in postmortem brain tissue is associated with a Braak 
stage of advanced AD patients [36]. Deactivation of the RNase domain of ERN1 in neurons 
reduces all hallmarks of AD including amyloid-beta load, cognitive impairment, and astrogliosis 
in 5xFAD mice [36]. Moreover, the ablation of eIF2α kinase PERK, one of the three major UPR 
genes, also prevents defects in synaptic plasticity and spatial memory in AD mice [50]. Our 
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findings show that the minor allele of rs56201815, increasing mRNA expression of ERN1 in 
multiple brain regions, also significantly increases the risk of AD, which corroborate these 
experimental results and provide more evidence that responses to ER stress are probably 
involved in the causal pathway of AD.  
 
Aging is the most important risk factor for late-onset AD, indicating that certain risk factors 
during the aging process might be implicated and required in the pathogenesis of AD. The UPR 
is one of the mechanisms disrupted during aging, resulting in augmented susceptibility to ER 
stress and the accumulation of unfolded protein [51]. Previous studies show that aging leads to 
deficits in the systems involved in the defense against unfolded proteins in the rat hippocampus 
[52]. Persistent ER stress in the central nervous system during aging can initiate apoptosis of 
neurons and can trigger the innate immune response in microglia [53, 54]. Combined with the 
fact that many AD-related genes identified by GWAS are expressed exclusively in microglia, our 
findings indicate that the interaction between the UPR and innate immune system might play a 
critical role in biological mechanisms underlying AD.  
 
As rs56201815, the variant rs12373123 in the MAPT region was also identified in APOE ε4 non-
carriers. The minor allele of rs12373123 was associated with reduced susceptibility to AD in 
ADSP, ROSMAP, CHS, and GenADA. This SNP is located in an LD block spanning >400kb, 
and is in high LD with a large number of SNPs including multiple missense variants in MAPT, 
SPPL2C, CRHR1 and KANSL1. Previous GWAS show that rs12373123 and two nearby 
missense SNPs (rs12185268 and rs12373124) in complete LD with rs12373123 exhibit 
pleiotropic associations with numerous diseases and traits including intracranial volume [55], 
corticobasal degeneration [56], PD [57–60], primary biliary cirrhosis [61] , red blood cell count 
[62], and androgenetic alopecia [63]. On the other hand, the major allele, more predisposed to 
degenerative diseases, is significantly associated with increased bone mineral density [64, 65]. 
Because SNPs contributing to age-related degenerative diseases are generally not subject to 
evolutionary selection [66, 67], its major allele is probably selected by evolution due to its 
beneficial effect on bone mineral density. The results of our age-of-onset analyses indicate that 
this pleiotropic region might also be implicated in late-onset AD, especially in APOE ε4 non-
carriers. Our cell type-specific analyses reveal that rs12373123 is a cis-eQTL in different brain 
cells of multiple critical genes implicated in PD and FTD (e.g., MAPT and GRN), elucidating the 
regulatory mechanisms underlying its pleiotropy. Due to the involvement of tau protein in the 
etiology of AD and PD, the effect of rs12373123 on these diseases might be mediated by 
MAPT. Indeed, rs12373123 is in high LD with multiple missense SNPs (e.g., rs62056781 and 
rs74496580) in MAPT, and we found in the snRNA-seq data that rs12373123 is also an eQTL of 
MAPT in astrocytes. Our finding also suggests that the effects of rs12373123 can be mediated 
by increasing the expression of GRN in microglia, which is a key gene protective against FTD. 
 
TACR3 encodes NK3-R, one of the neuropeptide neurokinin receptors that is predominantly 
expressed in most brain regions [41]. Stimulation of NK3-R significantly enhances learning and 
memory performance in aged rats [68]. Furthermore, a SNP located in 3’-UTR of TACR3 is 
associated with learning performance, hippocampal volume in elderly human patients [68], and 
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the most anterior basal forebrain volume [69]. The association of rs144292455, a nonsense 
variant in TACR3, provides more evidence for its potential involvement in AD.    
 
Also, our results demonstrated advantages in the statistical power of using a Cox model for age-
of-onset traits than a logistic model for binary outcomes in the study of AD. The power gain in 
terms of p-values is evident for many well-known AD-related SNPs in e.g., TREM2 and CLU, 
which all achieved more significant p-values than a previous study using the same cohort [18]. 
Despite a smaller sample size, the p-value from the Cox model for detecting APOE ε4, the 
recognized true positive signal, is much more significant than a recent large-scale meta-analysis 
of AD status [10] and a previous analysis using a linear model of log-transformed age-of-onset 
[26]. Moreover, our age-of-onset analysis showed promising results for identifying rare variants 
compared to logistic regression. An advantage of a Cox model over Poisson regression or 
logistic regression is that it implicitly accounts for age-varying hazards, a characteristic in many 
age-related diseases, e.g., AD [70]. Our results in AD suggest that Cox models can have a 
power advantage for exploring rare variant association in other age-related diseases.  
 
Although our identified SNPs were validated in multiple independent cohorts, we acknowledge 
some limitations. The definitions and criteria of diagnosis of AD can vary across these cohorts. 
AD has a certain similarity in the clinical and biological manifestation of other common 
neurodegenerative diseases such as FTD, which makes the clinical diagnosis of AD more 
complicated. Also, two of our findings rs56201815 in ERN1 and rs144292455 in TACR3 are rare 
variants (MAF=~0.13% and ~0.09%), which had lower imputation quality compared to a 
common variant, especially for rs144292455. Most of our GWAS replication cohorts had 
moderate imputation quality for rs56201815. Although these SNPs showed solid associations in 
our meta-analyses, as the sample sizes of our WGS replication cohorts are small for rare 
variants, more GWAS studies using large-scale WGS or WES data are preferable to further 
validate these identified associations. 
 
In conclusion, we identified three novel SNPs in ERN1, TACR3, and SPPL2C/MAPT-AS1 that 
exhibit strong associations with the age-of-onset of AD. We also explored their regulatory 
consequences at the tissue and single-cell levels in the brain. These findings support the 
hypothesis of the potential involvement of the UPR to ER stress and tau protein in the 
pathological pathway of AD, contributing to the understanding of the biological mechanisms 
underlying AD. Our findings are useful for guiding follow-up studies and provide more insight 
into the molecular mechanisms and implications of the relevant genes in AD.     

Methods 

Phenotypes in age-of-onset GWAS 
A total of 10,913 European-American participants used in the discovery phase of the exome-
wide age-of-onset association analyses of AD were collected from the ADSP project. These 
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subjects were sampled from 24 cohorts, among which >3000 subjects were sampled from the 
ADC project (Table S6). The AD status of individuals used in the analyses was defined by 
clinical assessment based on NINCDS-ADRDA criteria of AD. All controls were cognitively 
normal individuals aged 60+. Details about study design and sample selection were described 
in [71]. The AD status variable in the ADSP dataset was constructed based on information on 
prevalent and incident AD status from the updated dataset (Version 7 with release date on June 
09, 2016) if available. Otherwise, information on prevalent and incident AD status as given in 
Version 5 (release data on July 13, 2015) was used. More specifically, a subject was treated as 
AD if either prevalent or incident AD status during the ADSP follow-up was observed. The age-
of-onset variable was based on the same datasets as the AD status. In both versions (Version 5 
and 7), all data for age-of-onset, which we received from dbGaP, were censored by age 90. 
 
Six cohorts (ROSMAP, LOADFS, CHS, GenADA, the ADSP extension study) were included in 
the replication phase of the age-of-onset GWAS. To be consistent with the AD status in ADSP, 
AD status in ROSMAP was based on the clinical diagnosis of AD at the last visit. For AD cases, 
the age at first Alzheimer’s dementia diagnosis variable was used as age-of-onset, which was 
also censored by age 90 if it was 90+. For controls, age-of-onset was calculated as age at the 
last visit or age at death if age at the last visit was not available. In LOADFS, some subjects had 
missing information about the age-of-onset of AD. For these subjects, we treated them as 
censored and set its age-of-onset as the age at the recruitment. In CHS and GenADA, the AD 
status and age-of-onset variables in phenotype files provided in dbGaP were used. In the ADSP 
extension study, the ‘AD’ and ‘Age’ variables in phenotype files were used as the AD status and 
the age-of-onset. We included definitive AD and control subjects, and subjects diagnosed with 
probable AD, possible AD, family AD, non-family AD, or unknown were not included in the 
analysis.  

Genotyping, Imputation, and Quality Control 
WES genotypes of bi-allelic SNPs mapped to hg19 from 10,913 ADSP participants were called 
using the quality-controlled Atlas-only pipeline at Baylor College of Medicine (We did not use the 
data from the GATK pipeline at the Broad institute due to known quality issues 
(https://www.niagads.org/adsp/data-notices)). More details about the production of the WES 
data in ADSP can be found in [18]. Variants with missing rate > 2% or MAC < 10 were excluded 
from the age-of-onset association analyses. After the filtering, 108,509 and 110591 variants 
remained in the analysis using all subjects and APOE ε4 non-carriers, respectively. VCF files of 
recalibrated WGS data from 1196 participants in ROSMAP were downloaded from the synapse 
website (https://www.synapse.org/). A total of 681 subjects were included in the replication 
phase after removing 16 discordant WGS samples, 17 duplicates and 477 subjects overlapping 
the ADSP sample. Genotyping of 3043 participants in CHS was performed using a 
HumanOmni1-Quad Illumina array. Genotyping of 3456 non-Hispanic Caucasian participants in 
NIA-LOADFS was performed using a Human610-Quad Illumina array (~600K SNPs). 
Genotyping of 1588 non-Hispanic Caucasian participants in GenADA was performed using two 
Affymetrix 250K arrays (a total of ~500K SNPs). More information about these cohorts can be 
found in [72–74]. We phased and imputed the genotypes in these cohorts using the Michigan 
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imputation server [75] with a reference panel from the Haplotype Reference Consortium (HRC) 
(Version r1.1 2016). WGS project level genotype VCF files (hg38) called by GATK were 
downloaded from NIAGADS (https://dss.niagads.org/datasets/ng00067/ ), from which the 
genotypes of 1147 non-Hispanic whites in the ADSP extension study were extracted.  

Exome-wide age-of-onset association analysis 
The association analyses of the age-of-onset of AD in the discovery phase of ADSP was 
conducted using a Cox mixed-effects model implemented in the coxmeg R package [21], which 
accounted for the family structure in the cohort using a genetic relatedness matrix (GRM). A 
dense GRM was first estimated from the original WES data based on the GCTA model [76] 
implemented in the SNPRelate R package [77]. In the discovery phase of ADSP, we built a 
sparse GRM by setting any entry below 0.03 to zero. We evaluated five top PCs (PC1 to PC5) 
calculated from the dense GRM, and included the only significant PC2 in the analyses. We first 
estimated a variance component in the null model, which was then used to estimated HRs and 
p-values for all SNPs. We performed two analyses, (a) including all subjects with PC2, sex and 
the number of copies of APOE ε4 included as covariates, (b) including only APOE ε4 non-
carriers with PC2 and sex included as covariates. We found that the estimated variance 
component was zero in the analysis (b), suggesting no evidence of random effects, and 
therefore we instead used a simple Cox model. The threshold to declare significant associations 
was calculated as 0.05 divided by the total number of tested SNPs. For comparison with the 
analysis of AD status, we performed association analysis by fitting a logistic regression using 
the glm R function adjusting for the same covariates with the same sample. 
 
We performed age-of-onset association analyses in LOADFS, CHS, ROSMAP, GenADA, and 
the ADSP extension study for the top SNPs passing the suggestive threshold (p<5e-06) in the 
discovery phase. The same model and estimation procedures as in ADSP were used in 
LOADFS, which is also a family-based cohort. In LOADFS, the GRM was estimated from the 
genotype array data. The association analyses were conducted in the other four cohorts (i.e., 
CHS, ROSMAP, GenADA and the ADSP extension study) using a Cox model implemented in 
the survival R package [30] because these cohorts consisted of unrelated subjects. We also 
included sex and the number of copies of APOE ε4 as covariates. Meta-analysis effect sizes 
and standard errors were computed using the summary statistics from all five studies based on 

the following fixed-effects model,  and , where  is the 
weight for the study . To compare age-of-onset analysis with case-control analysis, we also 
performed association analyses of AD status in ADSP using logistic regression.  

Gene-based association analysis 
The gene-based analysis was performed based on the summary statistics obtained from the 
age-of-onset association analyses. We only included SNPs with MAC≥10 and missing rate<2% 

ns 
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in the gene-based analyses. Each SNP was first annotated to a gene using its SNP ID 
according to a gene location file obtained in the MAGMA website 
(https://ctg.cncr.nl/software/magma). We only included SNPs within the boundary of a gene 
body. Gene-based p-values were then computed using MAGMA with a SNP-wise mean model 
[46]. LD between the SNPs was estimated using the raw WES data in ADSP. 

Gene-set and cell type association analysis 
The gene-set analysis was performed for curated gene sets and GO terms using the procedure 
SNP2GENE in FUMA [47] based on the summary statistics obtained from the age-of-onset 
association analyses. The 1000 Genomes Project (phase 3) for the European population was 
used as a reference panel in the analysis. The cell type association analysis was also 
performed using FUMA [78] following the SNP2GENE procedure. We selected a human brain 
single-cell RNA-seq data set provided in [79] as a reference for cell type-specific gene 
expression.   

Analysis of FDG-PET data 
The longitudinal FDG-PET average intensity scores across five regions of interest (ROIs) 
(left/right angular gyrus, bilateral posterior cingulate gyrus, and left/right inferior temporal gyrus) 
for 738 subjects in ADNI having the WGS data were downloaded from the ADNI website 
(https://ida.loni.usc.edu). Details about sample preparation and data generation were described 
in [32, 33]. The association analysis between average FDG-ROI and the genotype of 
rs56201815 was performed by fitting a linear mixed-effects model using lme4 R package [80] 
including a random effect accounting for within-subject variability and three covariates (age, sex, 
and diagnosis group).  

Analysis of tissue-specific RNA-seq and microarray data 
BAM files of aligned reads from a total of 2213 RNA-seq samples in three brain regions 
(dorsolateral PFC, PCC, and anterior caudate nucleus) in the ROSMAP project were 
downloaded from the synapse website (https://www.synapse.org/). Raw counts of 57,905 
coding and non-coding genes were called using featureCounts [81] according to the GENCODE 
annotations GRCh37(r87). Samples with RIN<5 were excluded before the analysis. We first 
removed low-expressed genes (those genes for which fewer than three individuals had counts-
per-million>1) before normalization. We then normalized the RNA-seq raw counts using the 
trimmed mean of M-values (TMM) normalization method [82]. In the analysis of PFC, 761 non-
Hispanic Caucasian subjects (including four rs56201815-G carriers) having both gene 
expression and genotype of rs56201815 from the WGS data with RIN≥4.5 were included. 
Differential eQTL analysis was performed using DESeq2 [83] adjusted for RIN, age at death, 
sex, AD status, and RNA extraction methods (polyA selection or rRNA depletion). In the 
analysis of PCC and anterior caudate nucleus, 371 (including three rs56201815-G carriers) and 
585 (including four rs56201815-G carriers) non-Hispanic Caucasian subjects having both 
genotypes and gene expression with RIN≥4.5 and rRNA depletion were included, respectively. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.01.28.923789doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923789
http://creativecommons.org/licenses/by-nc-nd/4.0/


To minimize technical noise resulted from sample preparation, we did not include polyA 
selection samples (accounting for merely 10% and 15% of all samples) because different RNA 
extraction methods have a large impact on measured expression in postmortem samples [84], 
and the samples of all rs56201815-G carriers were generated using rRNA depletion. Differential 
eQTL analysis was performed using DESeq2 adjusted for RIN, age at death, sex, AD status.  
 
The raw count data of 3252 RNA-seq samples in nine brain tissues (i.e., amygdala, ACC, 
hypothalamus, caudate (basal ganglia), nucleus accumbens (basal ganglia), putamen (basal 
ganglia), cerebellar hemisphere, cerebellum and spinal cord (cervical c1)) and four non-brain 
tissues (i.e., sigmoid colon, lung, spleen and whole blood) from the GTEx project (version 8) 
were downloaded from the GTEx portal (https://gtexportal.org/home/datasets). Gene-level 
quantification was conducted by RSEM [85] . All GTEx raw count data were normalized using 
the same pipeline as in the analysis of ROSMAP. Differential eQTL analysis was then 
performed using DESeq2 with age, sex, and RIN as adjusted covariates.  
 
The gene expression microarray data in peripheral blood from 742 ADNI subjects were profiled 
using the Affymetrix Human Genome U219 Array. Raw expression values were pre-processed 
using the robust multiarray average normalization method. More details about sample collection 
and data pre-processing can be found in [86]. Differential gene expression analyses were 
performed using linear regression adjusted for RIN and plate number.  

Analysis of DNA methylation data  
The DNA methylation data in PFC were collected from 740 individuals in ROSMAP using the 
Illumina HumanMethylation450 BeadChip. Eighteen samples lying beyond ±3 standard 
deviations for the top 3 PCs were removed as outliers. We converted methylation beta-value to 
M-value using a logistic transformation. Differential methylation analysis was carried out using a 
linear regression adjusted for the top 10 PCs.  

Analysis of H3K9ac ChIP-seq data 
H3K9ac ChIP-seq raw count data were downloaded from the synapse website 
(https://www.synapse.org/). This dataset is previously described in detail in [39]. Briefly, the 
sample comprising 26,384 H3K9ac peaks (nine peaks in the ERN1 region) across the genome 
was collected from dorsolateral PFC of 669 subjects from the ROSMAP project, among which 
625 subjects had also the WGS genotype data of rs56201815. The raw count data was 
normalized using the TMM method [82]. Estimation of tagwise overdispersion and the analysis 
of differential peaks for rs56201815 were carried out using DESeq2 [83] adjusted for FRiPs and 
GC bias. A sensitivity analysis was performed by further adjusting for 10 RUV components 
estimated using RUVSeq [87] . 
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Analysis of single-nucleus RNA-seq data  
We collected snRNA-seq raw count data generated by [43] using the 10X Genomics Cell ranger 
pipeline in human PFC from 48 subjects (50% AD cases) including 17,926 genes profiled in 
75,060 nuclei. We assigned cell identity and divided all cells into six subtypes (excitatory 
neurons, inhibitory neurons, astrocytes, oligodendrocytes, microglia, and OPCs) according to 
the previous clustering results [43] using the scanpy package [88]. The clustering of the cells is 
described in more detail in [43]. We excluded endothelial cells or pericytes because of the lack 
of abundant cell counts in these two cell types.  
 
To perform cell type-specific eQTL analysis, we first merged cells in each cell type and in each 
subject to obtain a raw count matrix of 17,926 genes and 39 subjects (Six subjects were 
excluded due to lack of WGS data). We then followed the preprocessing and normalization 
procedures in the previous eQTL analysis of the bulk RNA-seq data. Differential eQTL analyses 
were then performed using DESeq2 [83] with age, sex, and AD status as covariates. RIN was 
not available for most of the subjects.  

Functional annotation 
The epigenetic and regulatory annotation of the identified SNPs and its nearby SNPs in high LD 
(r2>0.8) was performed using Haploreg v4 [89], in which its tissue-specific epigenetic markers 
(H3K27ac), regulatory regions (enhancers and promoters), motif changes and eQTL information 
were annotated based on the ENCODE [90], Roadmap [91] and GTEx [41] projects. GWAS 
catalog [92] and GRASP [93] were used to annotate whether a SNP is an existing QTL.  
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Table 1. Summary statistics of candidate SNPs associated with age-of-onset of AD identified from ADSP in the analysis using all 
subjects adjusted for APOE ε4 and the analysis using APOE ε4 non-carriers. POS: coordinate of the SNP in build 37. log(HR): log of 
hazard ratio. Assumption test: P-values for testing the assumption of proportional hazards in ADSP. 
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Table 2. Detailed information about rs56201815-G carriers in ADSP, ROSMAP, LOADFS and CHS. Age at onset/censoring: age-of-
onset if the subject had AD or age at the end of follow-up if the subject was a control. AD/Non-AD: number of AD/control subjects. 
Male: percentage of males. APOE e4 carrier: number of APOE ε4 carriers. Seq Quality / dosage: sequencing quality of the minor 
allele carriers for ADSP WES, ADSP extension WGS, and ROSMAP WGS or imputed dosage for LOADFS and CHS. Comments: 
additional information about the subject. Cohort: the original cohort in ADSP. 
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Figures 
 
Figure 1. Results of exome-wide association analyses of age-of-onset of AD in the ADSP 
sample using (A) Model 1: a model with all subjects adjusted for a PC and sex; (B) Model 2: a 
model with all subjects adjusted for copy of APOE ε4, PC2 and sex; (C) Model 3: a model with 
APOE ε4 non-carriers adjusted for PC2 and sex. Three top SNPs identified in the APOE region 
using Model 1 were highlighted in the regional plot due to their extremely significant p-values. 
The red horizontal line is a threshold based on the Bonferroni correction (0.05/100,000=5e-07). 
(D) Comparison of p-values between a Cox model and a logistic model for well-known AD-
related SNPs and newly identified SNPs in this study in Model 1 (left), Model 2 (middle), and 
Model 3 (right). The same ADSP data and covariates were used to fit the Cox and logistic 
models. 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.01.28.923789doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Probability of remaining free of AD (Survival probability) and risk tables in the ADSP 
sample for genotype groups of (A) APOE ε4; (B) rs7982; (C) rs144292455; (D) rs12373123; (E) 
rs56201815 in all subjects; (F) rs56201815 in APOE ε4 non-carriers.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.01.28.923789doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. (A) Normalized longitudinal FDG-PET measurements between rs56201815-G carriers 
and non-carriers in ADNI. The p-value was calculated using a linear mixed-effects model in 
which individual-level random effects and three covariates (age at the measurement, sex and 
diagnosis) were adjusted. (B) Annotation of histone modifications, transcriptional factor binding, 
and evolutionary conservation in the genomic region of rs56201815. (C) Normalized expression 
of ERN1 between rs56201815-G carriers and non-carriers in three brain tissues in cerebrum 
(dorsolateral PFC, PCC and anterior caudate nucleus) from a ROSMAP RNA-seq sample. (D) 
Normalized expression of ERN1 between rs56201815-G carriers and non-carriers in anterior 
cingulate cortex, nucleus accumbens, and putamen from GTEx RNA-seq samples. 
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Figure 4. (A) Chromatin interaction (orange links) and tissue-specific eQTLs (green links) for 
rs56201815 and rs12373123 on chromosome 17 identified from the exome-wide association 
analysis of age-of-onset of AD in APOE ε4 non-carriers in ADSP. A gene that is in chromatin 
interaction or an eGene with these SNPs is highlighted in orange or green, respective. A gene 
highlighted in red indicates both features. (B) Normalized expression of three genes (MAPT, 
ARL17B, and GRN) near rs12373123 of 44 subjects (including 13 rs12373123-T/C carriers and 
2 rs12373123-C/C carriers) in six major brain cell types (astrocytes, excitatory neurons, 
inhibitory neurons, microglia, OPCs and oligodendrocytes). All cells in each cell type from each 
subject were first pooled, and the gene expression were aggregated by subjects. The gene 
expression was then adjusted for age, sex, and AD status.  
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Figure 5. Top 10 gene sets enriched based on the exome-wide association analyses of age-of-
onset of AD using (A) Model 2: a model with all subjects adjusted for copy of APOE ε4, PC2 and 
sex; (B) Model 3: a model with APOE ε4 non-carriers adjusted for PC2 and sex. Brain cell-type 
enrichment analysis based on the exome-wide association analyses of age-of-onset of AD using 
(C) Model 2 and (D) Model 3.  
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Supplementary Text 
Text S1. Additional acknowledgements for ADSP, ADNI, GTEx, and CHS. 

Supplementary Tables 
Table S1. Basic characteristics of the six study samples (ADSP, LOADFS, ROSMAP, CHS, 
GenADA, the ADSP extension study, and ADNI) included in the discovery and replication 
phases of the age-of-onset association analyses of AD.  
 
Table S2. Summary statistics of the three age-of-onset association analyses of AD using the 
ADSP sample. Model 1: a model with all subjects adjusted for a PC and sex; Model 2: a model 
with all subjects adjusted for copy of APOE ε4, PC2 and sex; Model 3: a model with APOE ε4 
non-carriers adjusted for PC2 and sex. 
  
Table S3. Summary statistics of the differential DNA methylation analyses of 11 probes in the 
ERN1 region using a ROSMAP sample for rs56201815. Beta: the effect size in M-value with 
respect to a copy of rs56201815-G. 
 
Table S4. Summary statistics of the differential analyses of nine H3K9ac peaks in the ERN1 
region (±200k flanking region of rs56201815) using a ROSMAP sample for rs56201815. logFC: 
log(fold-change) with respect to a copy of rs56201815-G. logCPM: log(count per million) of the 
peak. LR: likelihood ratio test statistics. Classification: functional annotation of the peak. Median 
Count: median count of the reads in the peak across the subjects.  
 
Table S5. Results of cell type-specific eQTL analyses of rs12373123 in six major brain cell 
types (excitatory neurons, inhibitory neurons, astrocytes, microglia, oligodendrocytes and 
OPCs) using the ROSMAP snRNA-seq data. logFC: log(fold-change) with respect to a copy of 
rs12373123-C. logCPM: log(count per million) of the peak. LR: likelihood ratio test statistics. 
Length: length of the gene body calculated by the distance between the start and end positions 
based on the Ensembl database “hsapiens_gene_ensembl”.   
 
Table S6. Frequency across 24 cohorts among 10,913 subjects included in the ADSP sample.  
 
Table S7. Detailed information about rs144292455-T carriers in ADSP, ROSMAP, LOADFS, 
GenADA and the ADSP extension study. Age at onset/censoring: age-of-onset if the subject 
had AD or age at the end of follow-up if the subject was a control. AD/Non-AD: number of 
AD/control subjects. Male: percentage of males. APOE e4 carrier: number of APOE ε4 carriers. 
Seq Quality / dosage: sequencing quality for ADSP WES, ADSP extension WGS, and ROSMAP 
WGS or imputed dosage for LOADFS and GenADA. Comments: additional information about 
the subject. Cohort: the original cohort in ADSP. 

Supplementary Figures 
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Figure S1. Q-Q plots of the p-values from the exome-wide age-of-onset association analyses of 
AD using A) a model with all subjects adjusted for a PC and sex; B) a model with all subjects 
adjusted for copy of APOE ε4, PC2 and sex; C) a model with APOE ε4 non-carriers adjusted for 
PC2 and sex. λ: genomic inflation factor. 
 
 
Figure S2. Normalized expression of nine genes (ARL17A, KANSL1, LRRC37A3, CRHR1, 
SPPL2C, LRRC37A, LRRC37A2, PLEKHM1, ARHGAP27) near rs12373123 of 44 subjects in 
six major brain cell types (astrocytes, excitatory neurons, inhibitory neurons, microglia, OPCs 
and oligodendrocytes). All cells in each cell type from each subject were first pooled, and the 
gene expression were aggregated. The gene expression was then adjusted for age, sex, and 
AD status. Expression of SPPL2C was observed only in neuronal cells. 
 
 
Figure S3. Normalized expression of ERN1 of 39 WGS subjects (including one rs56201815-G 
carrier) in astrocytes, excitatory neurons and oligodendrocytes. All cells in each cell type from 
each subject were first pooled, and the gene expression were aggregated. The gene expression 
was then adjusted for age, sex, and AD status.  
 
 
Figure S4. Normalized expression of ERN1 between rs56201815-G carriers and non-carriers in 
A) ten tissues from GTEx RNA-seq samples; B) peripheral blood from an ADNI microarray 
sample. In the GTEx samples, there is one rs56201815-G carrier in all tissues except for colon, 
in which there are two carriers. 
 
 
Figure S5. Results of gene-based association analyses of age-of-onset of AD in the ADSP 
sample using summary statistics from (A) Model 2: a model with all subjects adjusted for copy of 
APOE ε4, PC2 and sex; (B) Model 3: a model with APOE ε4 non-carriers adjusted for PC2 and 
sex. Top genes with a p-value <1e-04 were highlighted. The red horizontal line is a threshold 
based on the Bonferroni correction (0.05/17,000=3e-06). 
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