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Summary
Despite its overwhelming clinical importance, the SARS-CoV-2 gene set remains unresolved, hindering

dissection of COVID-19 biology. Here, we use comparative genomics to provide a high-confidence
protein-coding gene set, characterize protein-level and nucleotide-level evolutionary constraint, and
prioritize functional mutations from the ongoing COVID-19 pandemic. We select 44 complete
Sarbecovirus genomes at evolutionary distances ideally-suited for protein-coding and non-coding
element identification, create whole-genome alignments, and quantify protein-coding evolutionary
signatures and overlapping constraint. We find strong protein-coding signatures for all named genes
and for 3a, 6, 7a, 7b, 8, 9b, and also ORF3c, a novel alternate-frame gene. By contrast, ORF10, and
overlapping-ORFs 9c, 3b, and 3d lack protein-coding signatures or convincing experimental evidence
and are not protein-coding. Furthermore, we show no other protein-coding genes remain to be
discovered. Cross-strain and within-strain evolutionary pressures largely agree at the gene, amino-acid,
and nucleotide levels, with some notable exceptions, including fewer-than-expected mutations in nsp3
and Spike subunit S1, and more-than-expected mutations in Nucleocapsid. The latter also shows a
cluster of amino-acid-changing variants in otherwise-conserved residues in a predicted B-cell epitope,
which may indicate positive selection for immune avoidance. Several Spike-protein mutations, including
D614G, which has been associated with increased transmission, disrupt otherwise-perfectly-conserved
amino acids, and could be novel adaptations to human hosts. The resulting high-confidence gene set
and evolutionary-history annotations provide valuable resources and insights on COVID-19 biology,
mutations, and evolution.

Introduction

SARS-CoV-2, the virus responsible for COVID-19", is a betacoronavirus in the subgenus Sarbecovirus,
which also includes SARS-CoV, responsible for the 2003 severe acute respiratory syndrome (SARS)
outbreak. Its large 29,903-nucleotide positive-strand RNA genome encodes ~30 known and
hypothetical mature proteins (Fig. 1a, Fig. 2, Extended Data Fig. 1). Despite SARS-CoV-2’s extreme
medical importance, its gene content remains surprisingly unresolved, with several hypothetical open
reading frames (ORFs) whose function or even protein-coding status is unknown. Moreover, no
systematic resource exists for interpreting the functional impact of SARS-CoV-2 mutations and
prioritizing candidate drivers that may underlie phenotypic differences between strains.

A large open reading frame spans two thirds of the genome, and results in non-structural proteins nsp1-
nsp10 and nsp12-nsp16 when an internal programmed translational frameshift* occurs (ORF1ab), or
nsp1-11 otherwise (ORF1a) with translation terminating four codons past the frameshift site. ORF1ab
encodes Pol (polymerase, RNA-dependent replication), Hel (helicase), ExoN (exonuclease,
proofreading), 3CL-PRO (polyprotein cleavage), and other proteins involved in host-cell suppression,
immune suppression, and diverse viral functions (Supplementary Table S2).

The last third of the genome encodes named proteins S (Spike surface glycoprotein), composed of S1
(viral attachment to host-cell ACE2 receptor) and S2 (membrane fusion, viral entry), E (Envelope
protein), M (Membrane glycoprotein), and N (Nucleocapsid, RNA genome packaging), which are
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present in all coronaviruses, and several unnamed proteins. Their host-cell translation requires
subgenomic RNAs of varying lengths, such that each functional OREF is first (or early) on its own
transcript®. This results from positive-to-negative transcription from the 3’ end to a transcription-
regulatory sequence (TRS), looping to a common 5’ leader, followed by negative-to-positive
transcription®.

The remaining unnamed ORFs are Sarbecovirus-specific and subject to disagreement on which
encode functional proteins (Supplementary Table S2). NCBI annotates SARS-CoV-2 (NC_045512.2)
with 3a, 6, 7a, 7b, 8, and 10. UniProt also annotates 9b and 9c (which they name 14), both overlapping
N (in an alternate frame). The paper introducing SARS-CoV-2 also shows 3b (which overlaps 3a in
SARS-CoV but is truncated in SARS-CoV-2, with several in-frame stop codons)'. Other publications®**
include different subsets, use different names, or propose additional ORFs (including 3¢ and 3d
overlapping 3a). NCBI annotates SARS-CoV (NC_004718.3) orthologs of 3a, 6, 7a, 7b, and 9b, but 8 is
split into 8a and 8b, 3b is included, and neither 9c nor 10 are included. (ORF nomenclature details in
Supplementary Text S1.)

High-throughput experiments provide some evidence on SARS-CoV-2 gene content, though they
sometimes disagree, cannot prove non-functionality of non-detected ORFs (as they only capture
specific conditions), and cannot distinguish incidental transcriptional/translational events from selected
function. Proteomics identified peptides for 1ab, S, 3a, M, 6, 7a, 8, N, and 9b, but not E, 3b, 7b, 9c, or
10", Direct-RNA sequencing found subgenomic RNAs for a different subset: S, 3a, E, M, 6, 7a, 7b, 8,
and N, but limited or no support for 3b, 3d, 3c, 9b, 9¢c, and 10" with 3¢, 7b"°, and 9b possibly
translated by leaky ribosome scanning from 3a, 7a, and N subgenomic RNAs, respectively. Ribosome
profiling predicted translation of 1ab, S, 3a, E, M, 6, 7a, 7b, 8, N, and 10, and eleven alternate-frame
ORFs (including 3¢, 9b), but not ORFa 3d, 3b, or 9¢™°.

Here, we use comparative genomics of 44 Sarbecovirus strains to resolve the SARS-CoV-2 protein-
coding gene set (Fig. 1), and to distinguish genetic variants more likely to have functional importance.
We select 44 closely-related and complete coronavirus genomes, generate whole-genome alignments,
evaluate protein-coding and nucleotide-level constraint, and annotate synonymously-constrained
codons. We show that five hypothetical ORFs are not functional proteins and confirm protein-coding
status for seven accessory ORFs, including novel alternate-frame ORF3c within 3a. We use protein-
level and nucleotide-level inter-strain constraint to analyze 1875 mutations from 2544 pandemic
isolates, show gene-level and codon-level agreement between within-strain and across-strain selective
pressures, reveal recent adaptive acceleration for N and surprising deceleration for S1 and nsp3, and
flag mutations disrupting evolutionarily-conserved positions that may represent novel adaptations to
human hosts, including Spike D614G.

Results

Strain selection, alignment, constraint

We selected and aligned 44 complete Sarbecovirus genomes (SARS-CoV-2, SARS-CoV, and 42 bat-
infecting strains, Extended Data Fig. 2, Supplementary Table S1) at evolutionary distances well-
suited for identifying protein-coding genes and non-coding purifying selection, spanning ~3
substitutions per 4-fold degenerate site on average (comparable to 29-mammals/12-flies projects
and ranging from 1.2 (E) to 4.8 (nsp16) and higher (Supplementary Table S2). Betacoronaviruses
outside Sarbecovirus (including MERS-CoV) are too distant (eg. no detectable homology across ORFs
6-7a-7b-8), and SARS-CoV-2/SARS-CoV isolates are too proximal for reliable evolutionary signatures.

20,21),

To distinguish regions evolving under protein-coding constraint, we used their codon substitution
patterns across Sarbecoviruses, quantified using codon-resolution PhyloCSF?? scores in all three
reading frames, and smoothed using a hidden Markov model to create genome browser tracks'?*%*
(Fig- 1b, Fig. 2). We also computed gene-resolution PhyloCSF scores for each known protein and
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hypothetical ORF, and generated CodAlignView? visualizations highlighting protein-coding vs. non-
coding features for manual exploration of their alignments in all reading frames (Fig. 1c,
Supplementary Table S2). These tools are widely-accepted standards for protein-coding gene

annotation and for distinguishing protein-coding vs. non-coding genes in human and other species®-
22,26-28

Beyond protein-coding constraint for amino-acid translation, we also evaluated nucleotide-level
overlapping constraint within protein-coding regions indicative of dual-coding regions, RNA structures,
RNA-binding protein sites, etc, using reduced synonymous-substitution rate estimated using FRESCo,
which we previously developed and applied to viruses® and human®. We annotated 1394
synonymously-constrained codons (14% of 9744, FDR=0.125) and defined 92 synonymous-constraint
elements (SCEs) (covering 1555 codons), using 9-codon-resolution significantly-decreased
synonymous rate relative to gene average®*?'.

Coding constraint on non-overlapping genes
As expected, E, M, N, S2, nsp1-nsp10, and nsp12-nsp16 showed clear protein-coding constraint

(Supplementary Table S2), with a change in constrained reading frame at the known programmed
frameshift (Fig. 2, Extended Data Fig. 1). Beyond its first 9 codons that match Pol, the 13-codon
nsp11 showed no nucleotide changes in Sarbecovirus, but stop-codon gain/loss across
betacoronaviruses indicates it is not separately functional (Supplementary Fig. S1).

S1 shows extremely rapid nucleotide evolution (near-zero phyloP*? and phastCons®) but strong
PhyloCSF scores, indicating unambiguous protein-coding evolution and highlighting the power of
PhyloCSF to recognize protein-coding evolutionary signatures despite rapid nucleotide evolution.

ORFs 3a, 7a, 7b, and 8 show clear positive PhyloCSF scores, indicating conserved protein-coding
regions functional at the amino acid level (Fig. 2b). The first half and last quarter of ORF6 show strong
PhyloCSF signal, indicating that it encodes a functional protein, despite a less-constrained intermediate
portion, and an overall near-zero average score per codon (-0.3, Fig. 1¢).

ORF8 shows near-zero nucleotide-level conservation (phyloP/phasCons), lacks well-established
functions, and was split into 8a/8b in SARS-CoV, suggesting at first glance that it might be non-
functional. However, it shows strongly-positive protein-coding PhyloCSF score (4.61/codon), and long
stretches of strong protein-coding constraint, indicating unambiguous protein-coding function. Its high
nucleotide-level rate is inflated by past recombination, but remains high even using an ORF8-specific
phylogeny (Supplementary Fig. S2).

By contrast, ORF10 shows no protein-coding constraint anywhere along its length, contains in-frame
stop codons in all but four Sarbecoviruses truncating the last third of its already-short length (38 amino
acids), includes a frame-shifting deletion in one of those four strains, and shows near-perfect
nucleotide-level conservation (phyloP/phastCons) extending beyond the ORF on both sides, indicating
it is not protein-coding but instead has non-coding functions (Fig. 2b, Extended Data Fig. 3a). (This
region overlaps the 3-UTR pseudoknot RNA structure® involved in RNA synthesis, providing a likely
explanation for its high nucleotide-level constraint). Moreover, ribosome footprints in the region occur in
an overlapping upstream ORF or in a truncated ORF rather than uniquely in ORF10, consistent with
incidental-initiation events rather than functional translation (Extended Data Fig. 3b), and previously-
used comparative evidence for protein-coding function ignored a frameshifting deletion and was
insufficiently-powered (Extended Data Fig. 3c).

N-overlapping ORF 9b is coding, 9c is not

Evolutionary evidence for/against overlapping ORFs is harder to resolve, as protein-coding signatures
in the primary reading frame heavily influence scores in alternate frames: they skew the signal as
protein-preserving mutations in one frame are typically protein-disruptive in the other, and they
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compress the signal as there are fewer substitutions. However, their dual-coding nature leads to a
depletion of synonymous substitutions in the primary ORF localized over the overlapping segment,
resulting in a strong signal of overlapping-constraint**=", used next to investigate ORFs 9c and 9b
overlapping N.

The 73-amino-acid-long ORF9c/ORF14 shows no localized synonymous constraint in N (Fig. 3), calling
its protein-coding status into question. Moreover, its start codon is lost in one strain, most strains have
a three-codons-earlier stop (Extended Data Fig. 4), its start codon is 460 nucleotides after N’s with 9
intervening AUG codons (thus unlikely to be translated via leaky ribosome scanning), direct-RNA
sequencing found no ORF9c-specific subgenomic RNAs ' (and no TRS is appropriately positioned to
create one), shows no ribosome footprint'® or proteomics'*'* evidence, and many SARS-CoV-2
isolates® contain stop-introducing mutations’. We conclude ORF9c does not encode a functional
protein.

The 97-amino-acid-long ORF9b shows high amino-acid substitution rate in its central portion but
significant localized synonymous constraint in N for its start and end regions (Fig. 3), even relative to
the overall low synonymous rate of N, consistent with dual-coding functions. Moreover, its start and
stop codons are perfectly conserved and its 97 codons are stop-free in all Sarbecoviruses. Its Kozak
context is stronger than N’s and perfectly-conserved and its start codon is only 10 nucleotides
downstream of N’s, allowing it to be translated from N’s subgenomic RNA via leaky scanning
(Extended Data Fig. 5). ORF9b’s negative PhyloCSF score is consistent with dual-coding signal
biases. ORF9b also has proteomics support'>***’ (including evidence of viral-RNA binding®®), and
alternate-frame translation support by ribosome profiling™. In SARS-CoV, ORF9b protein (and
antibodies to it) was detected in SARS patients***°, localized in mitochondria, and interfered with host
cell antiviral response when overexpressed*'. We conclude ORF9b encodes a conserved functional
protein with rapidly-changing portions.

ORF3c is a novel functional protein

We next searched for additional protein-coding genes by computing PhyloCSF scores for all 67
hypothetical non-NCBI-annotated AUG-to-stop SARS-CoV-2 ORFs 225 codons long that are not
contained in a longer same-frame ORF (locally-maximal). None had positive PhyloCSF scores, but
some may be coding as overlapping-ORF scores are reduced by alternative-frame protein-coding
constraint, so we investigated near-zero top candidates for evidence of localized synonymous
constraint, start/stop-codon conservation, and absence of in-frame stops or frameshifting indels.

The highest-scoring candidate, which we call ORF3c, overlaps ORF3a near its start (Fig. 4), with 38 of
its 41 codons overlapping synonymous constraint elements in ORF3a, localized nearly-perfectly on the
dual-coding region. Despite the score biases of dual-coding regions, ORF3c has PhyloCSF score
closer to non-overlapping protein-coding ORFs than to hypothetical non-coding ORFs (Fig. 1¢),
indicating Sarbecovirus selection for protein-coding function. Strikingly, ORF3c also has many
synonymous substitutions that are non-synonymous in ORF3a, indicating ORF3c may be an equally-
strong driver of constraint in the dual-coding region (both frames show similar scores in the dual-coding
region). ORF3c also has conserved start and stop codons except for near-cognate GUG start in one
strain and a one-codon extension in SARS-CoV-2 and RaTG13, with no in-frame stop codons or indels.
We conclude ORF3c encodes a functional, conserved protein.

Previous studies proposed four ORFs overlapping 3a®®"*: 3¢ (41 codons), 3d (57 codons), 3b (22
codons, a truncated ortholog of SARS-CoV ORF3b), and a subset of 3d (33 codons). ORF3c was
proposed using synonymous constraint across 6 closely-related strains® and a broader set of
Sarbecoviruses®, although on its own such evidence could also stem from other overlapping functional
elements (and is abundant in SARS-CoV-2 even outside dual-coding regions), and using ribosome
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footprinting™®, although such signal can also result from incidental, non-functional translation (and the
other 8 such candidates lacked any conservation); it was predicted to contain a viroporin-like
transmembrane domain® and to be translated via leaky scanning®. The other three ORF3a-overlapping
candidates are not conserved and show variable length, premature stop codons, and other evidence
indicating they are not protein-coding (Extended Data Fig. 6, Extended Data Fig. 7, Supplementary
Text S2).

We examined all next-best-scoring candidates, and expanded the search to include shorter ORFs,
near-cognate start codons, non-locally-maximal ORFs, and ORFs on the negative strand, but found no
other convincing candidates (Supplementary Text S3, Supplementary Fig. S4), concluding our
protein-coding gene catalog is complete.

A new reference gene set for SARS-CoV-2

Altogether, our revised reference gene set consists of 1a, 1ab, S, 3a, 3c, E, M, 6, 7a, 7b, 8, N, and 9b,
including novel ORF 3c and previously-ambiguous 9b, and excluding 3b, 3d, 9c, and 10. These genes
are unambiguously translated into conserved functional proteins across Sarbecoviruses, and our

decisions are supported by a wealth of experimental evidence'®'*"®, including subgenomic RNAs
(or leaky scanning), ribosome profiling'®, and proteomics experiments'*'>(Supplementary Text S4).
This high-confidence reference gene set can form the basis for understanding viral biology and the
functional roles of pandemic mutations (Supplementary Text S5).

15-18

Sarbecovirus conservation informs SARS-CoV-2 variant impact

We next used the evolutionary history of each codon across Sarbecoviruses to annotate 1875 single-
nucleotide variants (SNVs) across 2544 SARS-CoV-2 isolates sequenced during the current COVID-19
pandemic, including 1142 amino-acid-changing (missense), 628 amino-acid-preserving (synonymous),
and 104 non-coding substitutions (Supplementary Table S3).

We classified all amino acid positions as “conserved” (no change in any of the 44 Sarbecovirus
genomes) or “non-conserved/changed” (at least one change) for each of the mature proteins and
hypothetical ORFs (Supplementary Table S2), a definition independent of the phylogenetic tree, and
thus resilient to recombination events common in coronavirus phylogenies™.

Within-strain vs cross-strains evolution

The fraction of changed amino acids varied greatly across ORFs (17%-80%, Fig. 5a, x-axis), indicating
dramatically different evolutionary pressures. Unnamed accessory ORFs had more changed amino
acids (average 57%) than named and well-characterized ORFs (average 28%). ORF1ab mature
proteins varied from 57% changed (nsp2) to <17% (3CL-PRO, Pol, Hel, ExoN, nsp7-10) and Spike
subunits from 61% changed (S1) to 25% (S2).

Faster-evolving proteins across Sarbecoviruses showed more amino-acid-changing mutations within
SARS-CoV-2 (Spearman correlation 0.70), indicating Sarbecovirus evolutionary pressures still apply
during the current pandemic (Fig. 5a). This inter-vs-within-strain agreement also held at codon
resolution, with amino-acid-changing mutations preferentially disrupting non-conserved residues (535
mutations in 3264 positions, 16.4%) vs. conserved residues (607 in 6480, 9.4%, p<107°) (Extended
Data Fig. 9a).

Accelerated and decelerated evolution

Notable deviations from this general agreement may reflect recent accelerated/decelerated evolution.
S1 showed significantly-fewer mutations than expected from its extremely-high inter-strain rate (13%
amino-acid-changing mutations observed vs. 17% expected, nominal p=0.0017, depletion: 28);
additional SNVs (N=2696, May 9, 2020) further strengthened the statistical significance of this result
(p=0.00033). Nsp3 also showed significantly fewer mutations than expected (10% vs. 15%, nominal
p<107, depletion: 90) and Nucleocapsid significantly more (21% vs. 11%, nominal p<107%, excess: 42).

Jungreis et al. SARS-CoV-2 gene content p5
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The lower-than-expected number of mutations in S1/nsp3 might indicate recent mutation-rate or
selective-pressure changes, possibly stemming from different phases of host-adaptive evolution, with
pre-pandemic earlier-adapting S1/nsp3 (eg. via non-human-host transmission or undetected human
transmission) requiring fewer pandemic-phase human-adaptive mutations than other later-adapting
genes (noting that only a subset of mutations are adaptive). Alternatively, S1/nsp3 may have more
positions in which deleterious mutations would be strongly-deleterious (purified-out even in shorter
timescales) vs. mildly-deleterious (purified-out only over larger timescales). Lastly, frequent S1
recombination could inflate inter-strain rate estimates, but probably insufficiently to account for the
observed discrepancies. (Supplementary Text S6).

The higher-than-expected number of variants in N might be explained by positive selection for host
adaptation. We investigated whether such positively-selected variation might be clustered in specific
segments, and searched the entire genome for clusters of variants disrupting conserved amino acid
residues. We found no significantly-depleted regions and only one region significantly-enriched
(Supplementary Text S7) relative to gene-specific variant density (p<0.012 after conservative
genome-wide multiple-hypothesis correction), which was indeed localized in N, and contained 14
variants disrupting conserved residues (out of the observed excess of 29 such variants in N)
concentrated in 20-amino-acid region R185-G204 (noting this enrichment is relative to the already-high
enrichment of such variants in N). This region overlaps a predicted B-Cell epitope*, suggesting positive
selection for immune system avoidance (Fig. 5b, Extended Data Fig. 9c).

Spike SNV prioritization

We next investigated whether we can help prioritize candidate driver SNVs associated with phenotypic
differences between SARS-CoV-2 strains, using the evolutionary history of each amino acid across
Sarbecoviruses to provide position-specific estimates of evolutionary constraint, thus taking into
account the biological context and precise functions that each amino acid plays in coronavirus biology
(beyond position-independent general estimates from general amino acid properties).

As proof-of-principle, we focused on 16 amino-acid-changing variants in Spike with high frequency
and/or epitope proximity***®> (Supplementary Table S3). Among them, radical-amino-acid-change
D614G, which rose in frequency across multiple cities and increases infectivity in vitro**’, disrupts a
perfectly-conserved residue (across Sarbecoviruses), and lies in a stretch of 11 perfectly-conserved
amino acids (Fig. 5¢), indicating its disruption is deleterious in bat-host contexts, and likely represents a
novel human-host adaptation.

Of the other 15 Spike variants, two are in perfectly-conserved residues (V615I/F, P1263L) and two in
mostly-conserved residues in highly-conserved regions (A831V, A829T/S), indicating likely-functional
changes. Another three are in moderately-conserved contexts (V367F, D839Y/N/E, D936Y/H) less
likely to be functional, and eight lie in repeatedly-altered amino acids in poorly-conserved regions and
likely-neutral.

Lastly, Sarbecovirus evolutionary context helps prioritize likely drivers among co-inherited mutations.
Spike D614G was nearly always co-inherited with Pol P4715L (also radical and altering a perfectly-
conserved residue in a highly-conserved context, but potentially-deleterious given Pol’s slow evolution
and less-likely-to-be-adaptive function), nsp3 nucleotide change C3037T (repeatedly-observed
synonymous change, outside synonymously-constrained elements, likely-neutral), and nucleotide
change C241T (perfectly-conserved, non-coding, in a loop of six unpaired bases in the conserved 5'-
UTR SL5B secondary structure* 25 nucleotides upstream of ORF1ab).

Synonymous and non-coding substitutions
Even for synonymous SNVs we found agreement between cross-strain and within-strain constraint,

with synonymously-constrained codons showing fewer synonymous variants (73 of 1394, 5.2%) than
non-synonymously-constrained codons (555 of 8350 positions, 6.6%, binomial p=0.029, Extended
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Data Fig. 9b).

We also classified 643 intergenic and 5’/3’-UTR positions as “conserved” (N=432, 67%) or “non-
conserved” (Supplementary Table S3), and found a surprising (but non-significant) SNV excess in
conserved positions (17.4% vs. 13.7%, p=0.17).

Discussion
We used comparative genomics to determine the conserved functional protein-coding genes of SARS-
CoV-2, resulting in a new high-confidence evolutionarily- and experimentally-supported reference gene
set, including ORFs 1a, 1ab, S, 3a, 3c, E, M, 6, 7a, 7b, 8, N, and 9b, but excluding 3b, 3d, 9¢, and 10.

We show that novel ORF 3c is functional and conserved, and that no other conserved genes remain to
be discovered.

Our comparative genomics evidence complements experimental approaches by providing a
comprehensive function-centric view of protein constraint, summed over all environmental conditions
and hosts spanned by the strains compared here, while experimental methods only profile a single

environmental and host condition in each experiment. Moreover, while experimental methods can suffer

from incidental transcriptional or translational events, evolutionary signatures specifically measure
functional constraint for a given function. While in principle our methods may miss recently-evolved
genes that only function in a subset of strains, we found that our Sarbecovirus cross-strain evolutionary
evidence agreed with SARS-CoV-2/SARS-CoV within-strain experimental evidence, suggesting it is
unlikely that we may have missed newly-evolved genes.

It is important to note that comparative genomics methods that focus on nucleotide-level constraint
such as phyloP and phastCons, as valuable as they are, would have mistakenly rejected S1 and ORF8
as seemingly non-conserved (given their extremely-rapid evolutionary rate and recombination history),
and conversely included ORF10 as seemingly-conserved (given high nucleotide-level conservation in
the overlapping RNA structure). Instead, our methods were able to correctly distinguish the protein-

coding status of these genes because they use protein-coding evolutionary signatures that: (a) focus on

the patterns of change characteristic of protein-coding constraint (specific codon substitution

frequencies and reading frame conservation) rather than the overall number of substitutions; and (b)
are less sensitive to the specific phylogenetic tree relating the genomes compared, and thus resilient to
the frequent recombination events that characterize coronavirus genomes.

We found that both protein-coding and non-coding constraint agree between cross-strain Sarbecovirus
substitutions and within-strain SARS-CoV-2 mutations, enabling us to classify SARS-CoV-2 variants
into likely-functional vs. likely-neutral according to their evolutionary constraint. This revealed that the
Spike D614G substitution likely represents a new adaptation to human hosts, as it disrupts a
Sarbecovirus-conserved residue in a strongly-conserved region of S1, and to interpret the likely
functional impact of genetic variants co-inherited with D614G based on their evolutionary history.
Beyond the specific examples cited here, our annotations are broadly useful for interpreting SARS-
CoV-2 variants and inferring causal relationships between viral mutations and disease phenotype. For
interpreting future variants, we also created a genome browser track hub to facilitate SARS-CoV-2
variant interpretation based on their evolutionary context, and based on our revised gene annotations.

We found three notable exceptions to the otherwise-strong agreement between inter-strain and within-
strain variation: N showed significantly more amino-acid-changing mutations than expected, and nsp3
and S1 showed significantly fewer. For N, the acceleration is consistent with positive selection for

human-host adaptation across many variants, including a 20-amino-acid region enriched for conserved-
residue-disrupting variants in a B-cell epitope. For nsp3 and S1, the deviation raises the possibility they

may represent pioneer proteins that adapt to new-host transmission prior to its pandemic phase, then
require fewer mutations while other proteins ‘catch up’, an observation that may be more generally true
across different proteins showing acceleration/deceleration in different phases of host adaptation and
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pandemic spread. Another possibility is that the space of deleteriousness across all possible mutations
is differently-distributed for nsp3 and S1 compared to other proteins, with more deleterious mutations in
the strongly-deleterious end of the distribution, thus explaining the discrepancy in the number of
observed amino-acid-changing substitutions between the short timescales captured in the recent
pandemic SNVs vs. the longer timescales captured in cross-Sarbecoviruses comparative genomics.
We discuss these and other possibilities in Supplementary Text S6.

Overall, our new reference gene set provides a solid foundation for systematically dissecting the
function of SARS-CoV-2 proteins, and focusing experimental work on high-confidence uncharacterized
ORFs, which can be guided in part by their evolutionary dynamics (such as the rapid evolution and
recombination history of ORF6 and ORF8, indicating possible adaptive roles). In addition, our gene-
level, codon-level, and nucleotide-level Sarbecovirus constraint, and the classification of all existing and
potential SNVs into likely-functional vs. likely-neutral based on their evolutionary history, provide
important foundations for elucidating SARS-CoV-2 biology, understanding it evolutionary dynamics,
prioritizing candidate drivers mutations among co-inherited mutations, and prioritizing candidate regions
for vaccine design and refinement.
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Figure 1. Overview. a. Previously annotated named (black font) and unnamed or proposed (blue font) SARS-CoV-2
genes, with confirmed protein-coding (green), rejected (red), or novel protein-coding (purple) classification, using

evolutionary and experimental evidence. b. Phylogenetic Codon Substitution Frequencies (PhyloCSF) scores distinguish

protein-coding (left) vs. non-coding (right) using evolutionary signatures, including distinct frequencies of amino-acid-

preserving (green) vs. amino-acid-disruptive (red) substitutions, and stop codons (cyan/magenta/yellow) in frame-specific

alignments, and additional features. c. PhyloCSF score (x-axis) for all confirmed (green) and rejected (red) ORFs,

showing annotated/hypothetical/novel (labeled) and all AUG-initiated 225-codons-long locally-maximal ORFs (unlabelled).

Novel ORF3c (purple) clusters with protein-coding. Only-modestly-negative ORF9c/ORF10 scores are artifacts of score
compression in high-nucleotide-constraint regions, and substantially drop when nucleotide-conservation-scaled (see
Extended Data Fig. 8).
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Figure 4. Novel gene 3c overlapping 3a is protein-coding. a. Synonymous-constraint elements (blue) match nearly-
perfectly 41-codon ORFc dual-coding region boundaries (black), and protein-coding evolutionary signatures (green)
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switch between frame 1 and 2 (rows) in the dual-coding region, with frame-2 signal (negative flanking ORF3c) increasing
to near-zero, and frame-1 signal (high flanking the dual-coding region) dropping to near-zero. b,c. Codon-resolution
evolutionary signatures (colors, CodAIignView25) annotating genomic alignment (letters) spanning ORF3a start and dual-
coding region, in frame-1 (top) and frame-2 (bottom), highlighting (blue boxes): (b, frame-2, ORF3c) radical codon
substitutions (red) and stop codons (yellow, magenta, cyan) prior to ORF3c start; synonymous (light green) and
conservative (dark green) substitutions in ORF3c; ORF3c’s start codon is conserved, except in one strain (row 4) with
near-cognate GUG; ORF3c’s stop codon is conserved except for one-codon extension in two strains (rows 2-3); no
intermediate stop codons in ORF3c; (c, frame-1, ORF3a) abundant synonymous and conservative substitutions in 3a prior
to dual-coding region; increase in fully-conserved codons (white) over dual-coding region. Short interval (61nt) with only
one weak-Kozak-context intervening start codon indicates ORF3c may be translated from ORF3a’s subgenomic RNA via
leaky scanning.
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Figure 5. Within-strain variation vs. inter-strain divergence. a. Gene-level comparison. Long-term inter-strain
evolutionary divergence (x-axis) and short-term within-strain variation (y-axis) show strong agreement (linear regression
dotted line, Spearman-correlation=0.70) across mature proteins (crosses, denoting standard error of mean on each axis),
indicating that Sarbecovirus-clade selective pressures persist in the current pandemic. Well-characterized genes (black)
show fewer changes in both timescales (bottom left) and less-well-characterized ORFs (blue) show more in both (top
right). Significantly-deviating exceptions are: nsp3 and S1 (bottom right) showing significantly-fewer amino-acid-changing
SNVs than expected from their cross-Sarbecovirus rapid evolution, and N (top left), showing significantly-more, possibly
due to accelerated evolution in the current pandemic. b. Rapidly-evolving Nucleocapsid region. Top: Nucleocapsid
context showing B-cell epitope predictions (black, “IEDB Predictions” track), and our annotation track-hub showing:
conserved amino acids (red blocks), synonymously-constrained codons (green blocks), and SNV classification (colored
tick-marks) as conserved/non-conserved (dark/light) and missense/synonymous (red/green); top 3 tracks show AUG
codons (green) and stop codons (red) in three frames. Bottom: Focus on 20-amino-acid region R185-G204 (dotted box) in
predicted B-cell epitope (black) significantly-enriched for amino-acid-changing variants (red) disrupting perfectly-
conserved residues, indicative of positive selection in SARS-CoV-2 for immune system avoidance. c. Spike D614G
evolutionary context. Sarbecovirus alignment (text) surrounding Spike D614G amino-acid-changing SNV, which rose in
frequency in multiple geographic locations suggesting increased transmissibility. This A-to-G SNV disrupts a perfectly-
conserved nucleotide (bold font, A-to-G), which disrupts a perfectly-conserved amino-acid (red box, D-to-G), in a
perfectly-conserved 11-amino-acid region (dotted black box, light-green=synonymous-substitutions) across bat-host
Sarbecoviruses, indicating D614G represents a human-host-adaptive mutation.
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Methods

Genomes and Alignments

Genome sequences were obtained from https://www.ncbi.nlm.nih.gov/. The genomes and NCBI
annotations for SARS-CoV-2 and SARS-CoV were obtained from the records for accessions
NC_045512.2 and NC_004718.3, respectively. The UniProt annotations for SARS-CoV-2 were
obtained from the UCSC Genome Browser ¢ on April 5, 2020.

The 44 Sarbecovirus genomes used in this study were selected starting from all betacoronavirus and
unclassified coronavirus full genomes listed on ncbi via searches
https://www.ncbi.nlm.nih.gov/nuccore/?term=txid694002[Organism:exp] and the same with txid1986197
and txid2664420 on 5-Mar-2020, excluding any that differed from NC_045512.2 in more than 10,000
positions in a pairwise alignment computed using NW-align *°, that cutoff being chosen so as to
distinguish Sarbecovirus genomes among those that were classified, and removing near duplicates,
including all SARS-CoV and SARS-CoV-2 genomes other than the reference. Coronavirus genomes in
the left half of Extended Data Fig. 2 were those listed by
https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=11118 on 11-Feb-2020.

The genomes were aligned using clustalo®® with the default parameters. The Phylogenetic tree was
calculated using RAXML °' using the GTRCATX model.

PhyloCSF, FRESCo, and other conservation metrics

PhyloCSF (Phylogenetic Codon Substitution Frequencies)*? determines whether a given nucleotide
sequence is likely to represent a functional, conserved protein-coding sequence by determining the
likelihood ratio of its multi-species alignment under protein-coding and non-coding models of evolution
that use pre-computed substitution frequencies for every possible pair of codons, and codon
frequencies for every codon, trained on whole-genome data. PhyloCSF was run using the 29mammals
empirical codon matrices but with the Sarbecovirus tree substituted for the mammals tree. Input
alignments were extracted from the whole-genome alignment and columns containing a gap in the
reference sequence were removed. Browser tracks were created as described previously ?°. Scores
listed in Supplementary Table S2 were calculated on the local alignment for each ORF or mature
protein, excluding the final stop codon, using the default PhyloCSF parameters, including --
strategy=mle.

FRESCo ?° was run using HYPHY version 2.220180618beta(MP) for Linux on x86_64 on 9-codon
windows in each of the NCBI annotated ORFs. Alignments were extracted for the ORF excluding the
final stop codon, and gaps in the reference sequence were removed. SCEs were found by taking all
windows having synonymous rate less than 1 and nominal p-value<10'5, and combining overlapping or
adjacent windows. For the variant analysis, FRESCo was also run on 1-codon windows using codon
alignments as described previously %°.

Substitutions per site and per neutral site for each annotated ORF and mature protein were calculated
by extracting the alignment column for each site or, respectively, 4-fold degenerate site, from the
whole-genome alignment and determining the parsimonious number of substitutions using the whole-
genome phylogenetic tree. For columns in which some genomes did not have an aligned nucleotide,
the number of substitutions was scaled up by the branch length of the entire tree divided by the branch
length of the tree of genomes having an aligned nucleotide in that column.

PhastCons and phyloP tracks shown in Fig. 2 are the Comparative Genomics tracks from the UCSC
Genome Browser, which were constructed from a multiz °® alignment of the list of 44 Sarbecovirus
genomes that we supplied to UCSC.

Analysis of Single Nucleotide Variants
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Single nucleotide variants were downloaded from the “Nextstrain Vars” track in the UCSC Table
Browser on 2020-04-18 at 11:46 AM EDT. Table S3 includes one additional mutation, G24047A, from a
later download, in order to represent Korber variant A829T/S. We defined an amino acid to be
“conserved” if there were no amino-acid-changing substitutions in the Sarbecovirus alignment of its
codon. We defined codons to be “synonymously constrained” if the synonymous rate at that codon
calculated by FRESCo using 1-codon windows was less than 1.0 with nominal p-value<0.034,
corresponding to a false discovery rate of 0.125. We defined an intergenic nucleotide to be “conserved”
if there were no substitutions of that nucleotide in the Sarbecovirus alignment. We classified SNVs as
Synonymous, Nonsynonymous, or Noncoding, relative to the NCBI annotations, so SNVs within ORF10
were classified as coding, and SNVs within overlapping ORFs 3c and 9b were classified relative to the
longer containing ORFs 3a and N, respectively. However, in Supplementary Table S3, we also
classified variants according to our proposed reference gene annotations (fields beginning with New_);
when classifying variants in overlapping ORFs 3a/3c and N/9b we classify SNVs relative to the ORF in
which the variant is non-synonymous if that is true for only one of the frames, or the ORF for which the
amino acid change is more radical (as defined by the blosum62 matrix obtained from biopython version
1.58 %) if it is non-synonymous in both frames, or the larger ORF if the variant is synonymous in both
frames.

We determined mature proteins for which the density of amino-acid-changing SNVs differed
significantly from the density that would be expected from their level of conservation, by calculating the
residual of a linear regression of amino-acid-changing SNV density as a function of the fraction of
conserved amino acids, for all mature proteins. The regression line was y=0.235-0.165x. We
determined significance using a binomial p-value with a false discovery rate cutoff of 0.05. To further
test significance of the SNV depletion in S1, we downloaded a larger set of SNVs from the UCSC Table
Browser as above on 2020-05-09.

The 16 Spike-protein variants prioritized were those reported by Korber et al. in their bioRxiv preprint or
later Cell publication (ones at greater than 0.3% frequency, or 0.1% if near certain epitopes).

To find regions that were significantly enriched for missense variants in conserved amino acids, we first
defined a null model as follows. For each mature protein, we counted the number of missense variants
and the number of conserved amino acids and randomly assigned each SNV to a conserved amino
acid in the same mature protein, allowing multiplicity. For any positive integer n, we found the largest
number of variants that had been assigned to any set of n consecutive conserved amino acids within
the same mature protein across the whole genome. Doing this 100,000 times gave us a distribution of
the number of missense variants in the most enriched set of n consecutive conserved amino acids in
the genome. Comparing the number of actual missense variants in any particular set of n consecutive
conserved amino acids to this distribution gave us a nominal p-value for that n. We applied this
procedure for each n from 1 to 100 and multiplied the resulting p-values by a Bonferroni correction of
100 to calculate a corrected p-value for a particular region to be significantly enriched. We note that
these 100 hypotheses are correlated because enriched regions of different lengths can overlap, so a
Bonferroni correction is overly conservative and our reported p-value of 0.012 understates the level of
statistical significance. To find significantly depleted regions we applied a similar procedure with every n
from 1 to 1000, but did not find any depleted regions with nominal p-value less than 0.05 even without
multiple hypothesis correction.

Miscellaneous
Ribosome footprints shown in Extended Data Fig. 3 are from the track hub at ftp://ftp-
igor.weizmann.ac.il/pub/hubSARSRibo.txt .

Data Access
The PhyloCSF tracks and FRESCo synonymous constraint elements are available for the SARS-CoV-
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2/wuhCor1 assembly in the UCSC Genome Browser at http://genome.ucsc.edu as public track hubs
1232448 hamed “PhyloCSF” and “Synonymous Constraint”. The alignments and phylogenetic tree used
here are included as supplementary materials. The alignments may be viewed, color coded to indicate
protein-coding signatures, using CodAlignView (https://data.broadinstitute.org/compbio1/cav.php) with
alignment set wuhCor1_c and chromosome name NC_045512v2.

Our proposed reference gene set for SARS-CoV-2 is included in BED format in Supplementary
materials and is available as the “PhyloCSF Genes” track in the UCSC Genome Browser. A track
showing the genes we have rejected may also be displayed using the configuration page.

A browser track showing SARS-CoV-2 single nucleotide variants, color coded by whether they are non-
coding, synonymous, or amino-acid-changing, and whether they are in conserved codons, as well as
tracks showing all codons that are conserved at the amino acid or synonymous level, may be viewed in
the UCSC Genome Browser using the track hub at https://data.broadinstitute.org/compbio1/SARS-
CoV-2conservation/trackHub/hub.txt. The details page for each SNV includes information about
Sarbecovirus conservation and a link to view the alignment of a neighborhood of the SNV in
CodAlignView. It is our intention to update this track hub as the list of variants in the UCSC Table
Browser is updated. [Note to reviewers: classification is currently with respect to NCBI annotations; we
will add a track classifying SNVs with respect to our PhyloCSF Genes annotations once our paper is
accepted.]

In this resource, we have augmented variant data made available by UCSC ** with our own
annotations. UCSC data came from nextstrain.org °°, which was derived from genome sequences
deposited in GISAID *. Right of use and publication of the underlying sequences is entirely controlled
by the authors of the original resource and the contributors of individual sequences, who are
acknowledged in the Nextstrain metadata file included with supplementary materials. Our analysis
provides an additional layer of annotation on their work rather than replicating or replacing it.

Original data usage policy as provided by UCSC: “The data presented here is intended to rapidly
disseminate analysis of important pathogens. Unpublished data is included with permission of the data
generators, and does not impact their right to publish. Please contact the respective authors (available
via the Nextstrain metadata.tsv file) if you intend to carry out further research using their data. Derived
data, such as phylogenies, can be downloaded from nextstrain.org (see "DOWNLOAD DATA" link at
bottom of page) - please contact the relevant authors where appropriate.”
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Extended Data Figures

UniProt mature proteins
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Extended Data Figure 1. PhyloCSF signal for polyprotein ORF1. UCSC Genome Browser view SARS-CoV-2 genome
for polyprotein ORF1ab showing UniProt gene annotations for individual non-structural proteins (nsp), PhyloCSF tracks
(green) in each of 3 reading frames, and Synonymous Constraint Elements (SCEs, red), along with phastCons/phyloP
nucleotide-level constraint (green/blue). Polyprotein 1ab is processed into 16 mature peptides nsp1-nsp16. PhyloCSF
signal shows clear protein-coding signal for all proteins, indicating clearly that all are functional proteins (except nsp11,
red circle, discussed in the main text). PhyloCSF signal captures the correct frame throughout the entire length of each

protein (except nsp3, where some small regions show reduced frame-2 signal and/or increased frame-3 signal, but upon
inspection these are only stop-codon-free in frame-2 and do not represent dual-coding candidates).
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Extended Data Figure 3. ORF10 is not protein-coding. a. Alignment of Sarbecovirus genomes at ORF10, including 30
additional flanking nucleotides on each side. Most substitutions are amino-acid-changing, either radical (red) or
conservative (dark green), with only two synonymously-changing positions (light green), indicating this is not a protein-
coding region. In addition, nearly all strains show an earlier stop codon (cyan), further reducing the length of this already-
short ORF from 38 amino-acids to 25, and one of the four strains lacking the earlier stop includes a frame-shifting
deletion. The putative partial transcription-regulatory sequence (TRS) present in SARS-CoV-2 and its closest relative (Bat
CoV RaTG13) is not conserved in any other strains. The region surrounding ORF10 shows very high nucleotide-level
conservation, which spans ORF10 and extends beyond its boundaries in both directions, indicating that this portion of the
genome is functionally important even though it does not code for protein (indeed, this region is part of a pseudoknot RNA
structure involved in RNA synthesis). b. Ribosome footprints previously used to suggest ORF10 translatlon in fact
localize either in an upstream ORF (UORF, green) or in an internal ORF (green, “final predictions” track’ ) but not in the
unique portion of ORF10 (dashed black box), indicating they are less likely to reflect functional translation of ORF10, and
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more likely to represent incidental translation initiation events. We note that the density of elongating footprints in the
unique portion (black box) is no greater than the density after the stop codon (red box), consistent with incidental events.
We also note that the internal ORF is only 18 codons long in 4 strains, and only 5 codons long in the other 40
Sarbecovirus strains, given the early stop codon (purple box) and unlikely to be functional. Footprint tracks show
elongating ribosome footprints in cells treated with cycloheximide (blue, CHX), and footprints enriched for initiating
ribosomes using harringtonine (Harr, red), and lactimidomycin (LTM, green). “mRNA-seq” track shows RNA-seq reads. c.
CodAIignView2 of alignment previously used to argue that a high dN/dS ratio in ORF10 indicated positive selection for
protein-coding-like rapid evolution®, based on only six closely-related strains (SARS-CoV-2, three bat viruses, two
pangolin viruses). The authors noted a frameshifting deletion (orange/grey) in one of the bat viruses, which provides
strong evidence against conserved protein-coding function, but they interpreted it (without evidence) as a potential
sequencing error and excluded the strain from consideration. Even ignoring the frameshift-containing strain, the evidence
used is insufficient to reach statistical significance: the alignment includes only 9 substitutions, of which 4 are radical, 4
are conservative, and 1 is synonymous. In a neutrally-evolving region with 9 substitutions, we would expect 2-3
synonymous changes, depending on the evolutionary model used, and a depletion to only 1 synonymous change is not
statistically significant (nominal p-value>0.18 even in the most generous evolutionary model). This already-non-significant
nominal p-value would move even further from significance with the necessary multiple-hypothesis corrections.
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Extended Data Figure 4. Nucleocapsid-overlapping ORF9c is not protein-coding. Sarbecovirus alignment of frame2-
encoded ORF9c (top), which overlaps frame3-encoded Nucleocapsid (bottom). ORF9c start codon is lost in one strain,
and most strains have an earlier UAG stop codon (magenta) 3 codons before the end. In Nucleocapsid-encoding frame 2
(bottom), nearly all nucleotide substitutions are amino-acid-preserving (synonymous, light green), indicating strong
purifying selection for protein-coding function. By contrast, in ORF9c-encoding frame 3 (top), nearly all nucleotide
substitutions result in function-disrupting (radical) amino acid changes (red), and very few result in synonymous (light
green) or function-preserving (conservative, dark green) substitutions, indicating lack of purifying selection for protein-
coding function for ORF9c, so it does not play conserved protein-coding functions. In addition, ORF9c is unlikely to be
translated via leaky ribosome scanning because its start codon is 460 nucleotides after N's (red arrow) with 9 intervening
AUG codons (green dots), direct-RNA sequencing found no ORFgc—specrfrc subgenomic RNAs'"® no TRS i |s
appropriately positioned to create one, and several SARS-CoV-2 isolates contain stop- mtroducrng mutations’, indicating
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that ORF9c is not a recently-evolved strain-specific gene either. We conclude 9c is not protein-coding.
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Extended Data Figure 5. Nucleocapsid-overlapping ORF9b is protein-coding. Sarbecovirus alignment of frame3-
encoded ORF9b (top), which overlaps frame2-encoded Nucleocapsid (bottom). Although ORF9b-encoding frame3 shows
many function-disrupting (radical, red) substitutions, its start codon (red box) is perfectly conserved, its stop codon (blue
box) is perfectly conserved, and there are no intermediate stop codons in any strain. Moreover, its Kozak start-codon
context (dashed black box) is optimal for ribosomal start codon recognition, with A in position -3 and G in position +4
(green boxes), while the start codon context of N is less optimal, with an A'in -3 and T in +4 (orange boxes), making it
likely that ORF9b can be translated by leaky scanning from the same subgenomic RNA as N, as it is only ~2 codons
downstream of N’s start. Moreover, both the optimal 9b start-codon context, and the less-optimal N start-codon context
are fully-conserved features across all Sarbecovirus strains, indicating that leaky-scanning translation may be a
conserved feature throughout Sarbecoviruses. In addition, ORF9b shows significant localized synonymous constraint in N
in its start and end regions (Fig. 3), even relatlve to the overall low synonymous rate of N, consistent with dual codlng

functions. ORF9b also has proteomics support "in SARS CoV-2, including evidence of viral-RNA bmdnng and
alternate-frame translation sugport by ribosome profiling™. In SARS-CoV, ORF9b protein (and antibodies to it) was
detected in SARS patients®** localized in mitochondria, and interfered with host cell antiviral response when

overexpressed*'. We conclude ORF9b encodes a conserved functional protein-coding gene.
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c 76
DQ648856_Bat_Cov_BtCoV_273_: act 7 ‘zac car ¥ Ach 617G TeA A
KJ473812_BtRf_BetaCoV_HeB2013 ATGATG CCA. Tac caT [Tl ACA 616 ACC ARA TTG GTG GTT ATT CTG AGG B
K¥770860_Bat_Cov_J- < chmx-! can cac 888 adc acc B
3%993987_Bat_CoV_Rp_Shaani2011 ATG ATG CCAACT ACT 7163 o Joc: TC ‘776 GG R MGTGANM \G ARG ACT ACC ABA TTG GTG GT'T ATT C1TG AGG R

GQ153542_Bat_BARS. Cov_HKU3_7 ATG ATGIS) AT I8 7o Y o e anc T v ama e e BB acncnc o cac aTa B8 o 6H B 28 588 Ahc AnG AcT B8 ARA TTG GTG GTT AT CTG Ace B
DQ022305_Bat_SARS_CoV_HKU3_1 ATG ATG {8 act [N Trc] can) | AAATTG GTG GTTATT C16 A N
G ARG ACT [T ARA TTG GTG GTT ATT CTG AGG I
a6 act ace BB rr6 ore crr Bl cTe
16 act acc [ r16 616 o B crc N

= s ccamn s orocre EREEE
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NC 004718 SARS Covaa G T @ V L K T M S L Y M A I S P K F T T S L S L H KLLGOQOTLVLIKNLIESSSLITS LI KT B RMC
NC_004718_SARS_CovGee a6 CAC ARA TTA CTA CAG ACA CTG GTA TG ARA ATG CTA CAT TCT TCA TCT TTA AC AGC TG TTA ARG ACC C--~AC CGA ATG TGC ARA
KP444582_5ARS_1ike_cov_wiv1 anc coonrg T ana
K¥417146_Bat_SARS_Like_CoV_Red23166C anc Tr6TAC O ARG T ACT ACC AGC TG AGT CTA CAC AR TTA CTA CAG ACA CTG GTA TG AR ATG CTA CAT TCT TCA TCT T ACA AGC TG TTA A
HK211376_Cov_BERs_BetaCoV_¥N2018B GGC ACT CAG GTG TTA AAG ACT ATG TCO R CAC AAA TIA CTA CAG ACA TG GTA TTG ARA ATG CTA CAT TCTTCA TCT FTA ACA AGC TG TTA AAG)
KY417151_Bat_SARS Like_Cov_Rs7327 GGC ACT CAG GTG FTA AAG ACT ATG TcG B TAC ATG GCT ATTTCA CCG ARG T ACT ACC AGC TTG AGT CTACA AcaacC 1rG 17
KY417152_Bat_SARS Like_CoV_Rs9401GGC g CAC ARA TTA CTA CAG ACA CTG GTA TG ARA ATG CTA CAT TCT TCA TCT TTA AC AGC TG TTA ARG ACC C--~AC CGA ATG TGC ARA
K¥417144_Bat_SARS Like_Cov_Red084 GoC nc coonrgTTr Acance A
KF367457_Bat_SARS_Like_CoV_WIVI G6C nc Mccerarn Acrace CAC ARA TTA CTA CAG ACA CTG GTA TG ARA ATG CTA CAT TCT TCA TCT TTA AC AGC TG TTA AAG ACC C-~~AC CGA ATG TGC ARA
KU973692_UNVERIFTED_SARS _related_Cov_F46GiC anc. ca cce arG 17 cacl® 1 -ACCGAATG TCC ARA
Ke417145_Bat_SARS Like_Cov_RE4032GGC T ACT ACC AGE TTG AGT CTACA -ACcanATGTCC AR
KJ473816_BtRs_BetaCoV_YN2013GGC AcTcmGTGTTAuGAcTnGTcG- CAC AAA TTA CTA CAG ACA CTG GTA TTG AAA ATG CTA CAT TCT TCA TCT TTA ACA AGC TTG TTA AAG ACC C-~--AC CGA ATG TGC ARA
KY770858_Bat_CoV_Anlong_103GGC AAG cceanGTTT M cra. AcanGe CGA ATG TGC ARA
KY417143_Bat_SARS_Like_Cov_Red081G6C anc Acrace A 2CTTCATCT TTA ACA AGC 776 77 AAG B C---AC CGA ATG TGC AR
K¥417149_Bat_sARs_1ike Cov_Red aac P CAC AAA TIA CITA CAG ACA CTG GTA TIG ARA ATG CTA CAT TCTTCA TCT FTA ACA AGC TG TTA AAG ACC C——~AC CGA ATG TGC ARA
HK211376_Cov._BtRe_BatacoV_YN2018D GGC ACT CAG GG TTA AAG ACT ATG oG B TAC ATG G AT TCA B ARG T ACT ACC AGE TG AGT CTACA
FI535685_Bat_SARS._Cov_ed72_2006 GGC . ] CAC AAA TTA CTA CAG ACA CTG GTA TTG ARA ATG CTA CAT TCT TCA TCT TTAACA AGC TTG TTA AAG ACC C-—
HK211377_Cov. BtRs_Betacoy 120180 GoC anc coonngTTr
KY417142_Bat_SARS Like_Cov As6526 GGC e COG ARG TTT ACT ACC AGE TTG AGT CTACA
KY417147_Bat_SARS_Like_CoV_Rsd237GGC anc. cosaneTTT cacann
K¥417148_Bat_SARS Like_Cov_Red247GoC anc aacmr Acr cra ca
MK211375_Cov_BtRs_BetaCoV_2018A GGC ACT CAG GTG/RA AAG. ceraTrICA AGC TG AGT CITA CAC AA T CTA CAG ACA CTG GTA TG ARA ATG CTA CAT TCT TCA TCT TTA ACA AGC TG 1A ArG TS
0071615_Bat_SARS_Cov._Rp3 coc R CAG G ARG ACT A -ac AT B ATT TCA CCG ARG TTT ACT Ace BGH BT cac R B .GC TTG TTA ARG A
KP886808_Bat_sARS. 1ike_cov_nir_31c ool cac1h rTARAG ACT A ) W e a1 mea B anc 6 Act Acc AGC TG AGT CTA CAC AAA A 171 ACA AGe 176 17A ARG I
KJ473815_BtRs_BetaCoV_GX2013 GG [ CAG GG TTARAG ACT s \C ATG GCT ATT TCA CCG AAG TTT IR Acc AGc TTGER e T35 AGC TTG TTA AAG A1
KPS69996_Rhinolophus_affinis_CoV_LYRallGGC ACT CAG GG 26A AAG AcT rc M AR The arc BB arr ca [ AT AcC AGC] o 76 777 ARG AT
7X993986_Bat_Cov_Cp_tunnanz011GGC T a2 A AGE TG AGT CT CAC A TTA CTA CAG ACA C7 G4 BBBEAJA ATG CTA AT TCT TCATCT TTA ACR AGE 176 T A4
MK211374_Cov_BERL_BetaCov_SC2018GGC G acr e TCTTCA TCT PTA ACA AGC TG T7A AAGH
X3473814_BtRe_BetaCoV_RuB2013 6GC acr hec B v o acracc - B cnc
DQ412043_Bat_SARS_Cov_Rm 6o A CAG Girc AR BEE AcT b [ AR T2 ATc [SR AT a [ERE BAA WA AcT Acc!
K¥938558_Bat_CoV_strain 1650133 GocEEcAG dre TTa 16 G arr 88 coc Anc 8
D0412042_Bat_SARS_CoV_RE16GC cce anG B AcT ACC AGS TG AGT mmmmmmmmm-m
D0648856_Bat_cov_BECovV_273 ceana = Ararceana
KJ473812_BtRf_BetaCoV_HeB2013 GGC| 1A ccG AnG i ACT ACC AGC TTG AGT CTA CAC AAA TTA CTA CAG ACA CTG GTA [GR8 AA [Jl CTA CAT TCT TCA TCT TTA ACA AGC TTG TTA AAG | | cga ATG TGC ARA

ATTTCA CCG ARG - ACT ACC AGC TTG AGT CTA CAC AR TTA CTA CAG ACA CTG GTA FE8 AAA XS CTA CAT TCT TCA TCT TTA ACA AGC TTG TTA ARG

cm:!!!
crjcer

cac.

K¥770860_Bat_Cov_Jiyuan_84 cGe [ cac
JX993987_Bat_Cov_Rp_Sh: 011 coc B cac!
GQ153542_Bat_sARs_cov_nKu3_7 6oc B caG
DQ022305_Bat_sars_cov_xu3_1 coc B cacc

cccane ww ace ace 6 N B
TG GeT ATT TCA G AAG T IR Acc acc 1o RS e e VY

ﬂ )
- Acnccmc
_Bat_SARS_] a X Mncncusc rc:
K¥352407_SARS_related_CoV_strain_BtKy72 GG INGH|

NC_014470_Bat_Cov_BM48_31_BGR_2008 68 [N

NC 004718 SARS Cov.aa ¥ T Q S T A L Q E L L I Q Q W I Q F M M S R R R L L A C L CKEHKZKUV S TNLCTE HSTFREKTEKS QT VR *

004716 ShRS CovTACACACAATCG -
K7444592_SARS Like_Cov_NIVI6 TAC AR CAA TCGACG GeT T ca GG TrdBRIATC caGaan - ACG AAC TTA TGT AC CAT G TTT CGG AAG AAA CAG GFACGT BB
1417146 Bat SARS Like, Cov RaiZ31 TAC ACACAATCC -
HK211376_Co_BERs_BetaCov_TN2018 TAC ACACAA TCG ACG GCT c’rTcAGGm'nigmc cacenn B ACG AAC TTA TGT ACT CATTCG T CGG AAG AAACAG GTA COT BB
K2417151_pat SRS Like_Cov_Re7527 TAC ACACAA
KY417152_Bat_SARS_like_CoV_Rs9401TACACACAATCGACG GCT CTT C! T car 8 AR
K¥417140_pat_SARS ike_Cov Re4084 TAC A CAA - ACG AAC TTATGT ACT CAT TCG TTT 066 ARG A CAG GTACor BB
X8367457 Bt SARS Like Cov HIVL TAC ACRCAATCG - e
KU973692_UNVERIFIED SARS_relatea. Cot_ s TAC ACACAR - rcmcTn
X3417145_Bat_saRS_ Like_Cov_REH052 TAC CACAA o
K3473816_BtRs_BetaCoV_YN2013 TACACACAATCG M cac oracor AR
K¢770858_Bat_cov_Anlong_103TACACACAA daraay a ACG AAC TTA TGT ACT CAT TCG TTT CGG AG A CAG GTA CGT T8
KE417143_Bat_SARS_Lixe_Cov Red081TACACACAATCG faconde B
Ke417149_Bat_sARS Like_cov_Ret255 racMlcan acach ACGARCTTA i
HK211378_Cov_BtRs_BetacoV_YN2018D TAC ACACAA facaade Ac aaCTTA B
F3538686_Dat_SARS_Cov_Res72_2006 TAC ACACAATCG ACG GCTCTTC dyroad: B
MK211377_CoV_BtRs_BetaCoV_YN2018C TAC ACACAA' A T ACG AAC TTA TGT ACT CAT TCG TTT CGG AAG AAA CAG GTA CGT AR
1417142 Bat_SARS Like_CoV As6526 TAC ACACAA - Torer
KY417147_Bat_SARS_like CoV_Rsd237 TACACACAA ACG AACTTA AR
K1417146_Bat_SARS_Like_Cov Re4247 TAC ACACAA accmc T o
HK211375 o beRa_betacoy N01GATAC ACACAATCG ACGGCT CTEC - b
S0071615_Bac_Saxs_cov_Rpa T ACACAA - ACG AAC A TGT ACT CAT G TTT GG ARG AR CAG GTACor BB
XP206808_Dat SRS Like Cov_ SNLE 31C ACACACAN - Torer b
KJ473815_BtRs_BetaCoV_GX2013 TACACACAA lccd] B ACG AAC TTA T M cac GTa cor TAR
K£569596_Rhinolophus_afinis.Cov_LiRall TACACACAN rccmc T
993988 _Bat_CoV_Cp_Yunnan2011TAC ACACAATCG. [ cac oracor AR
HR2L1374_Cov_BERL_pecacol SC2016 TAC ACACAA o - ACG ARC TTA TGTACK CAT G TTT.CGG AG ANACAG GFACGT AR
X3472014 Bta_BekaCoy RuD2013 TAC ACACAA cnccncor
20412043_Bac_SARS_Cot_Rml 72C ACACAA erace e b
KY938558_Bat_CoV_strain_16B0133 TACACACAA acc aac TTA
50412042_Bat_SARS_Cov_REL TAC AACAATCG - -
00819556 Bat_Cov_ Brcow 273 2005 TACACACAA roolT can e - ACG AAC TTATGT ACT CAT G TTT GG ARG A CAG GTACor B8R
K3472612 BER_BotaCor_HeR2013 TAC ACACAR -
KY770860_Bat_CoV_Jiyuan_84 TAC ACACAR 7G GAG T1q i [ can o7 ACGAACTTA AR
IX993987_Bat_CoV_Rp_Sh: 011 TAC ACA CAA ﬂt e} ACGAACTTA
GO153542_Bat._SARS Cov_KU3_7 TAC ACACAATCG { Mlcac omncar B8k
50022305 pat_SARS_CoV_HRU3_1 TAC ACACAA o AcG aac T ToTACT CAT 16 TTT 6 ARG R o7 cor R
GQ153547_Bat_SARS_Cov_HKU3_12 TACACACAA Y B cacoracor maa
Ne_045512_5ARs_cov_2_wuhan_o 1B e B 7 A ACG AAC TTA TOT ACT CAT 106 717 6 ArG I CAG G7h o R
MN996532_Bat_Cov_RaTGL3| B cac |ATG AGT ACG AAC TTA TGT ACT CAT TCG TTT CGG AAG (XS CAG GTA CGT TAR
}G772933_Bat_SARS_like CoV_bat_SL_Covzc4s I8 ACACAATCG ACG! ¥ can 77 ATG AT
HG772934 Bt SARS Like Cov_bac_5t, covixca1 B ACA CARTCGACS v ca o 765 can v A 6l COR.CG CGACTA CTA GG TGC 1 167 G e G B ROAACE A TTA TOTACT CAT 106 T17C56 MG
x1352407 5%, elatea cov strain atkr72 EEACKCAN o B AAC ARG ACTCA RCG 177 GG
NC_014470_Bat_Cov_M48_31_BGR 2008 8 A CAA f atc Acc coaBER Tsc-ﬂus cac HG:
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Extended Data Figure 6. ORF3b is not protein-coding. Sarbecoviruses alignment of SARS-CoV 154-codon ORF3b
overlapping ORF3a, (reordered with SARS-CoV and related strains on top). Although start codon is conserved in all but
one strain, ORF length is highly variable due to numerous in-frame stop codons (red ovals and red rectangle). The 22-
codon ORF in SARS-CoV-2 has strongly negative PhyloCSF score, does not overlap any SCEs, and even among the four
strains sharing its stop codon (blue rectangle) all six substitutions are radical amino acid changes, providing no evidence
of amino-acid-level purifying selection. Ribosome profiling did not find translation of ORF3b, transcription studies did not
find substantial transcription of an ORF3b-specific subgenomic RNA, and translation by leaky scanning would implausibly
require ribosomal bypass of eight AUG codons (green rectangles, top panel), some with strong Kozak context.
(Supplementary Fig. S3 has comparison to reading frame of ORF3a.)
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stop codon in some isolates

R
Ne_045512_5ARs_Cov_2_truhan e taal ¥ A ¥ C W R ¢ T s ¢ c F s 5/a r o N B N PO KGE MHATS TLOGCS L CLOLAYVUVYCESILTRTARGCCHP ¥
Alt I\]Je]es: T T r/ A T ce T cc A T T A
KC_045512_sass_cov.2 ruhan_w. 1 anrar rcrace cerarra ancacrTIACTCACA CCr TR GCE
MN996532_Bat_CoV_RaTGl3 [% car aac cg A c 0% rca crr B rrc caa crr cor M M eTT TGT AAC AGT TTA cTC ACA BEA TTT GCT CGT TGC TGC TCG A TCA
MG772933_Bat_SARS_like_CoV_bat_SL_CoVZC45ATGGCT el Tcrmcmwrmm;\cccmc@mm A

G ATG GoA [T

MG772934_Bat_SARS_like_CoV_bat_SL_CovzXC21ATG GCT INER TGT 766 cGT Tc i TeT T6c Tor Trr Tea BB coc rrc FEN) aar [N G

G ATG Gea R Acc|

761 Tca BN TGT TTG CAA CTT GeT [N S GTT (S AAc AcT A [N HIS SR R o HER roc Mg roG
R

NC_004718_SARS_CoV ATG GCT Hleg R 8% Ter T6C TGT TTT
KT444582_SARS_like_CoV_WIV16 ATG GCT e [N 'GC TGT TTT 3
KY417146_Bat_SARS_like_CoV_Rs4231 ATG GCT [Rel BWA TGG CGT Tec BN TeT T6C T6T TT TeA 6AG B BN caa AaT [EN X E Crrfccalorr]
MK211376_CoV_BtRs_BetaCoV_YN2018B ATG GCT HER B o GeTeT TTT = !_ﬂﬂ o G|
KY417151_Bat_SARS_like_CoV_Rs7327 ATG GCT [Uegh (Y B e T6C TGT TTT -ﬂmr-
KY417152_Bat_SARS_like_CoV_Rs9401 ATG GCT fueh EO% 'GC TGT TTT T caa|
_Bat_SARS_] 2 B rer rec T TIT Jacd]
XE367457 Bat. SaRS, Like Cov_wrvi ATG con EH R scrorTrT TS rrc con V8 [ . O 1 roc YR
KU973692_UNVERTFIED_SARS_related_CoV_Fd6 ATG GCT Nl 6T TIT 3 rr 176 can Gcr.MﬂmrﬂA crc aca cer IS XA s IYee Toc cc S|
7417145_Bat_SARS_Like Cov_R£4092 ATc cor R

KJ473816_BtRs_BetaCov_YN2013 ATGGCT
K¥770858_Dat_Cov_Anlong_103 ATG GCT R
KY417143_Bat_SARS_like_CoV_Rs4081ATG GCT [N
KY417149_Bat_SARS_like_CoV_Rs4255 ATGGCT|
MK211378_CoV_BtRs_BetaCoV_YN2018D ATG Ge e FHNR
FJ588686_Bat_SARS_CoV_Rs672_2006 ATG GCT (el
MK211377_CoV_BERs_BetaCoV_YN2018C ATG GCT
KY417142_Bat_SARS_like_CoV_As6526 ATGGCT
KY417147_Bat_SARS_like CoV_Rs4237ATGGCT
KY417148_Bat_SARS_like_CoV_Rs4247 ATGGCT
MK211375_CoV_BtRs_BetaCoV_YN2018AATG GCT
DQO71615_Bat_SARS_CoV_Rp3 ATG GCT
KP886808_Bat_SARS_like_CoV_YNLF_31CATGGCT|
KJ473815_BtRs_BetaCov_GX2013 ATGGCT
KF569996_Rhinolophus_affinis_Cov_L¥RallATG T RER
JX993988_Bat_Cov_Cp_Yunnan2011 ATG GC (e}
MK211374_Cov_BERL_BetaCoV_SC2018 ATG GCT
KJ473814_BtRs_BetaCov_HuB2013 ATG G e
DQ412043_Dat_SARS_Cov. Rmi ATG e e TGT TGG COT
K¥938558_Bat_CovV_strain_1680133 ATG GeT RS B TGG CGT
0412042_Bat_SARS_CoV_RE1 ATG GCT ek 0 TGG CGT
DQ648856_Bat_CoV_BtCoV_273_2005 ATG GCT e 0N TGG CGT
KJ473812_BLRE_BetaCov_HeB2013 ATG GCT NS BGE TGG CGT
KY770860_Bat_CoV_Jiyuan_84 ATG GCT|
JX993987_Bat_CoV_Rp_Shaanxi2011 ATG GCT|
GQ153542_Bat_SARS_CoV_HKU3_7 ATG GCT|
DQ022305_Bat_SARS_Cov_HKU3_1
GQ153547_Bat_SARS_CoV_HKU3_12
K¥352407_SARS_related_CoV_strain_BtKY72
NC_014470_Bat_CoV_BM4B_31_BGR_2008 ATG GCT!
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Extended Data Figure 7. ORF3d is not protein-coding. Sarbecovirus alignment of 57-codon ORF3d (referred to by
some authors as 3b) overlapping ORF3a shows mostly function-altering radical amino-acid substitutions (red columns),
and repeated interruption of by one or more premature stop codons in all other strains (red ovals), unambiguously
indicating that ORF3d is not a conserved protein-coding gene. A substantial fraction of SARS CoV-2 isolates have stop-
introducing mutations, and ribosome profiling did not identify ORF3d as a translated ORF' , indicating that it is not a
recently-evolved strain-specific gene either.
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Adjusted Scores of All Real and Hypothetical ORFs
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Extended Data Figure 8. Branch-length-adjusted PhyloCSF score strongly rejects ORF10. Similar to Fig. 1c, but
showing PhyloCSF scores per codon divided by the average number of substitutions per site, to adjust for the fact that
high-nucleotide-conservation regions show compressed unscaled PhyloCSF scores (closer to zero) because there are
fewer nucleotide substitution events. The branch-length-scaled score distribution further separates the scores of
confirmed protein-coding genes (green) from non-protein-coding segments (red). The very low score of ORF10 with this
adjustment indicates that its only-slightly-negative unscaled-PhyloCSF score in Fig. 1¢ stems from the high nucleotide
conservation of the region, rather than protein-coding constraint. The scores of N-overlapping ORFs 9b and 9c are both
reduced, consistent with the high nucleotide conservation of N. Notably, the branch-length-adjusted score for 3c remains
high, consistent with its protein-coding nature, and despite the higher overall nucleotide conservation of its dual-coding
region. We have manually inspected all other candidates with adjusted scores higher than 9c, and all are rejected (as not
protein-coding): two are discussed in Supplementary Figure S4 (and are not protein-coding), and the remaining all show
internal stop codons (and are not protein-coding).
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NC_045512_SARS_CoV_2_Wuhan_Hu_1 CGT TCC TCA TCA CGT AGT CGC AAC AGT TCA AGA AAT TCA ACT CCA GGC AGC AGT AGG GGA
MN996532_Bat_CoV_RaTG13 GGG fiCH TCA TCA CGT AGT CGC AAC AGT TCA AGA BBG TCA ACT CCA GGC AGC AGT AGG GGA
MG772933_Bat_SARS_like_CoV_bat_SL_CovzC45BEE TCC TCA TCA CGT AGT CGC AAC AGT TCA AGA BBE TCA ACT CCA GGC AGC AGT AGG GGA
MG772934_Bat_SARS_like_CoV_bat_SL_Covzxc21 888 TCC TCATCA CGT AGT CGC AAC AGT TCA AGA BAG TCA ACT CCA GGC AGC AGT AGG GGA
NC_004718_SARS_CoV B8 TCC TCA TCA CGT AGT CGC [efel [Vl TCA AGA AAT TCA ACT BT GGC AGC AGT AGG GGA

KT444582_SARS_like CoV_WIV16 GGG MCH MGG TCA CGT AGT CGC [elell FR] TCA AGA AAT TCA ACT 6T GGC AGC AGT AGG GGA
KY417146_Bat_SARS_like CoV_Rs4231 /GGG fCH MEE TCA CGT AGT CGC [Hleil IRU] TCA AGA AAT TCA ACT B8R GGC AGC AGT AGG GGA
MK211376_CoV_BtRs_BetaCoV_YN20185/E66 G TCA TCA CGT AGT CGC [efel IRVl TCA AGA AAT TCA ACT BGH GGC AGC AGT AGG GGA
KY417151_Bat_SARS_like_ CoV_Rs7327 /666 MCH TCA TCA CGT AGT CGC [eleg [NV} TCA AGA AAT TCA ACT B8H GGC AGC AGT AGG GGA
KY417152_Bat_SARS_ like CoV_Rs9401 /GGG MEH TCA TCA CGT AGT CGC [efeji [¥%i TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
KY417144_Bat_SARS_like CoV Rs4084 {66 Tca coT AT cac (el [N TCA AGA AAT TCA ACT B6H GGC AGC AGT AGG GGA
KF367457_Bat_SARS_like CoV_WIV1 /GGG MGH TCA TCA CGT AGT CGC [elegl INU] TCA AGA AAT TCA ACT BT GGC AGC AGT AGG GGA
KU973692_UNVERIFIED_SARS_related CoV_F46 CC TCA TCA CGT AGT CGC [Sleii [¥0i TCA AGA AAT TCA ACT [BCT GGC AGC AGT AGG GGA
KY417145_Bat_SARS_like CoV_Rf£4092 B6E HEH Tca TCA cGT AGT cGe (el [N0I TCA AGA AAT TCA ACT B8 GGC AGC AGT AGG GGA
KJ473816_BtRs_BetaCoV_YN2013 (686 MG TCA TCA CGT AGT CGC [Slek [N} TCA AGA AAT TCA ACT BCHl GGC AGC AGT AGG GGA
KY770858_Bat_CoV_Anlong_ 103 EGE TCC TCA TCA CGT AGT CGC (el [V TCA AGA AAT 66 AcT BET GGC AGC AGT AGG GGA
KY417143_Bat_SARS_like_ CoV_Rs4081/E66 MEH TCA TCA CGT AGT CGC TCA AGA AAT TCA ACT BGH GGC AGC AGT AGG GGA
KY417149_Bat_SARS_like_CoV_Rs4255 /GGG FGE TCA TCA CGT AGT CGC [Eleh I¥Ni TCA AGA AAT TCA ACT BT GGC AGC AGT AGG GGA
MK211378_CoV_BtRs_BetaCoV_YN2018D BGE BGH TCA TCA CGT AGT CGC [Hlek [NV} TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
FJ588686_Bat SARS CoV_Rs672_ 2006 GGG MCH TCA TCA CGT AGT CGC [Hel [Nl TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
MK211377_CoV_BtRs_BetaCoV_YN2018c 666 i TCA TCA CGT AGT CGC [eleql IRUI TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
KY417142_Bat_SARS_like CoV_As6526 GGG MG TCA TCA CGT AGT CGC [ F¥VUl TCA AGA AAT TCA ACT B GGC AGC AGT AGG GGA
KY417147_Bat_SARS_like_ CoV_Rs4237/866 TCC TCA TCA CGT AGT CGC [ele IR0} TCA AGA AAT TCA ACT BH GGC AGC AGT AGG GGA
KY417148_Bat_SARS like CoV_Rs4247 GGG MCH GG TCA CGT AGT CGC [efeji [¥%i TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
MK211375_CoV_BtRs_BetaCoV_YN2018a /666 G TCA TCA CGT AGT CGC [Sleil FRU| TCA AGA AAT TCA ACT 68T GGC AGC AGT AGG GGA
DQ071615_Bat_SARS_CoV_Rp3 TCA TCA CGT AGT CGC [eleg IR0} TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
KP886808_Bat_SARS_like CoV_YNLF_31C GGG HEH TCA TCA CGT AGT GG [Sleh VUi TCA AGA AAT TCA ACT BEHl GGC AGC AGT AGG GGA
KJ473815_BtRs_BetaCoV_GX2013 86 TCC TCA TCA CGT AGT CGC gk [N TcA AGA BBE TCA ACT BEH GGC AGC AGT AGG GGA
KF569996_Rhinolophus_affinis CoV_LYRallE@E TCC TCA TCA CGT AGT CGC [Hen N0} TCA AGA AAT TCA BGA BGH GGC AGC AGT AGG GGA
JX993988_Bat_CoV_Cp_Yunnan2011B8E TCC TCA TCA CGT AGT GG [Slek VUi TCA AGA AAT TCA ACT BEl GGC AGC AGT AGG GGA
MK211374_CoV_BtR1_BetaCoV_sC2018 B6E T TCA TCA CGT AGT CGC [Sleh VUi TCA AGA AAT TCA ACT BEHl GGC AGC AGT AGG GGA
KJ473814_BtRs_BetaCoV_HuB2013 686 BEE TCA TCA CGT AGT CGC [eleh) V%! TCA AGA AAT TCA ACT BT GGC AGC AGT AGG GGA
DQ412043_Bat SARS_CoV_Rml GGG MEH TCA TCA CGT AGT CGC [efe [ V%1 [IGE AGA AAT TCA ACT GGH GGC AGC AGT AGG GGA

KY938558_Bat CoV_strain_16B0133 /686 TCC TCA TCA CGT AGT GG [oer et Tca AcA Yol Tca ACT €8T GGC AGC AGT AGG GGA
D0412042_Bat_SARS_CoV_Rf1[B6E TCC TCA TCA CGT AGT GG [ger ¥ Tca Aca [Nl Tca AcT B8 GGC AGC AGT AGG GGA
D0648856_Bat_CoV_BtCoV_273_2005 @66 TCC TCA TCA CGT AGT CGH [efer I Tca AcA ¥el Tca ACT BEH GGC AGC AGT AGG GGA
KJ473812_BtRf_BetaCoV_HeB2013 BGE TCC TCA TCA CGT AGT % rca aca Rl Tca AT [BEE GGC AGC AGT AGG GGA
KY770860_Bat_CoV_Jiyuan_ 84 B&E TCC TCA TCA CGT AGT GO [er ¥ TcA AGA el TcA ACT BE GGC AGC AGT AGG GGA
JX993987_Bat_CoV_Rp_Shaanxi2011 CC TCA TCA CGT AGT CGC [&fei [ V%1 TCA AGA AAT TCA ACT GOH GGC AGC AGT AGG GGA
GQ153542_Bat_SARS_CoV_HKU3_7 666 IGH TCA TCA CGT AGT CGC [elei IRUI TCA AGA AAT TCA ACT GGH GGC AGC AGT AGG GGA
DQ022305_Bat_SARS_CoV_HKU3_1 /GG TCC TCA TCA CGT AGT CGC Sl FVUl TCA AGA AAT TCA ACT BEH GGC AGC AGT AGG GGA
GQ153547_Bat_SARS_CoV_HKU3_12 BGE TCC TCA TCA CGT AGT CGc [ep N Tca NI AAT TcA ACT B8 GGC AGC AGT AGG GGA
KY352407_SARS_related CoV_strain BtKY72 CGT TCC BGE TCA CGT AGT GG [Her [V HEE AGA AAT TcA BEG 66T Xl A6 AGE AGA 66T
NC_014470_Bat_CoV_BM48_31_BGR_2008 CGT [iCH [¥Xe TCA cGT BGC CET ek [V FEE Aca aaT Tca ACA 66T [¥ele Acc BEE AeA 66T

[ ET AN LYEL M ochre Stop Codo: Frame-shifte . No alignment]

Extended Data Figure 9. Single nucleotide variants and conservation. Error bars indicate standard error of mean. a. Density of
SNVs disrupting conserved amino acids (dark red) is significantly lower than disrupting non-conserved amino acids (light red). Both
densities are higher near the 3’ end of the genome, indicating higher mutation rate or less purifying selection even among amino acids
that are perfectly conserved in Sarbecovirus. b. Density of synonymous variants in synonymously constrained codons (dark green) is
significantly lower than among synonymously unconstrained codons (light green), a depletion seen in most genes. Overall, conservation
in the Sarbecovirus clade at both the amino acid level and nucleotide level is associated with purifying selection on variants in the SARS-
CoV-2 population. ¢. Alignment of 20 amino acid Nucleocapsid region that is highly enriched for variants disrupting perfectly conserved
amino acids (alternate alleles shown in second row, W = A or T, K = G or T). There are 14 non-synonymous variants among the 14
perfectly conserved amino acids (columns with no red or dark green). This region is contained within a predicted B Cell epitope,
suggesting positive selection for immune system avoidance.
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