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Massively-parallel reporter assays (MPRA) enable unprecedented opportunities to test
for regulatory activity of thousands of regulatory sequences. However, MPRA only as-
say a subset of the genome thus limiting their applicability for genome-wide functional
annotations. To overcome this limitation, we have used existing MPRA datasets to
train a machine learning model that uses DNA sequence information, regulatory motif
annotations, evolutionary conservation, and epigenomic information to predict genomic
regions that show enhancer activity when tested in MPRA assays. We used the result-
ing model to generate global predictions of regulatory activity at single-nucleotide res-
olution across 14 million common variants. We find that genetic variants with stronger
predicted regulatory activity show significantly lower minor allele frequency, indicative
of evolutionary selection within the human population. They also show higher over-
lap with eQTL annotations across multiple tissues relative to the background SNPs,
indicating that their perturbations in vivo more frequently result in changes in gene
expression. In addition, they are more frequently associated with trait-associated SNPs
from genome-wide association studies (GWAS), enabling us to prioritize genetic vari-
ants that are more likely to be causal based on their predicted regulatory activity.
Lastly, we use our model to compare MPRA inferences across cell types and platforms
and to prioritize the assays most predictive of MPRA assay results, including cell-
dependent DNase hypersensitivity sites and transcription factors known to be active in
the tested cell types. Our results indicate that high-throughput testing of thousands of
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putative regions, coupled with regulatory predictions across millions of sites, presents
a powerful strategy for systematic annotation of genomic regions and genetic variants.

1 Introduction

Disruption and aberrant coordination of gene expression is often at the upstream causes
of complex human diseases. Genome wide association studies (GWAS) suggest the vast
majority of disease-associated loci are located in non-coding regions, and are specifically
enriched in enhancers, promoters, and other conserved cis-regulatory elements in disease-
relevant cell types [1–8]. This implies that these regions harbor regulatory variants and
are likely to be expression quantitative trait loci (eQTL). Systematically dissecting these
GWAS risk loci requires characterizing the vast number of regulatory elements in the human
genome, with a particular emphasis on those elements at which key transcriptional events
occur that predispose to pathological changes. This in turn requires large-scale mapping
of regulatory elements in multiple human tissues, an undertaking that has been the focus
of large consortium efforts such as ENCODE [9] and the NIH Epigenomic Roadmap [10].
However, simply having a catalog of elements is not sufficient to understand how these
elements work independently to regulate gene expression. This requires the ability to study
elements in high throughput, and in the appropriate cellular context.

Until recently, large-scale experimental identification of candidate eQTLs and ultimately
the disease-causing non-coding regulatory variants was infeasible. Computational approaches
using supervised learning methods primarily focused on training models that predict more
general disease causing variants from Human Gene Mutation Database [11], sequence speci-
ficities of protein binding sites [12], DNase I hypersensitive sites [13], and/or histone modi-
fication profiles [14]. However, even though each of these assays is individually informative,
each of them only captures a partial view of regulatory function, they frequently disagree
with each other, and they do not directly reflect the properties of cis-regulatory elements
that drive gene expression.

To improve the ability to interpret non-coding sequence, approaches can directly measure
the regulatory activity of a sequence in high-throughput are needed. One such solution is
the massively parallel reporter assays (MPRA), which was recently developed to interrogate
the regulatory potential of thousands of candidate sequences by measuring the down-stream
activities of a reporter gene in a relevant cell type [15–22]. The assay is able to detect
regulatory hits, which are the regulatory sequences that confer increased RNA expression
relative to the basal promoter among thousands of ∼150 bp candidate sequences. However,
the assay has a relatively low sensitivity despite high specificity [21].

One approach is to examine the functional relevance of those features in explaining MPRA
signals is to perform an explicit test on each individual feature to assess correlation with
the regulatory hit. One approach is to examine the functional relevance of those features
in explaining MPRA signals, and then perform an explicit test on each individual feature
to assess correlation with the regulatory hits [18, 20, 23, 24]. Another approach is to train a
classification model on predicting MPRA response using composite features. Even though
MPRA assays only cover a small fraction of the genome, they present the opportunity to
directly harness the resulting information in order to improve the ability to identify eQTL and
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GWAS causal alleles and to ultimately predict regulatory variants associated with complex
human diseases. Moreover, comparison of the prediction accuracies within and between
different MPRA datasets generated from varied experimental approaches may reveal further
insights as to the effectiveness and differences of regulatory elements in predicting regulatory
potential.

In this study, we formulate a supervised learning strategy to facilitate MPRA data anal-
ysis and then use those data to infer potential regulatory SNPs among all common variants.
We demonstrate that the regulatory hits from MPRA data are highly predictable when both
sequence and functional genomic data are taken into account. We identify a set of meaning-
ful regulatory binding sites, motifs, and epigenomic features that are highly predictive of the
MPRA outcomes (i.e., whether a sequence confers active in-vitro regulation of transcription
or not) in a given cell type, and also indicative of the transfected cell line’s tissue of origin as
shown by the DNase I hypersensitive sites assayed in the same cell type. Finally, we use this
information to build a general model that scores 14.3 million common non-coding variants
by predicted MPRA potential (PMP) in three distinct cell types.

2 Results

2.1 MPRA regulatory sequence predictions overview

In this paper, we used two recent MPRA datasets to train our model (Fig. 1a). For each
dataset, we processed them into a set of positive examples and a set of negative examples.

The first dataset were generated from lymphoblastoid cell lines (LCLs), looking to val-
idate eQTLs from the Geuvadis RNA-seq dataset of LCL from individuals of European
and West African ancestries [21]. The candidate regulatory sequences were generated using
150-bp oligos centered at the lead SNP (or SNPs in perfect LD to the lead SNP) in 3,642
high-confidence eQTLs, and tested in LCL. To enable binary classification, we obtained only
the activating sequences in the LCL-eQTL MPRA data that exhibit significantly higher fold-
change of RNA over plasmid with Bonferroni-adjusted p-value < 0.01 and negative sequences
with fold-change within one standard deviation from the average fold-change. As a result, we
obtained 2,770 positive (i.e., activating regulatory hits) and 18,100 negative training cases
(Fig. 1b).

The second dataset were derived from DNase-sensitive sites selected based on 25 ChromHMM
chromatin states in four cell types [22]. The tiling MPRA datasets were generated by tiling
31 overlapping 145-bp sequences across 15,720 295-bp regions and tested in HepG2 and
K562 cell lines. To generate training examples, we applied Gaussian mixture model on the
inferred MPRA regulatory activities at each single-nucleotide by the previously published
MPRA-SHARPR model. We then selected activating and repressive regulatory sequences
based on posterior probabilities above 0.9 and 0.95, respectively, and negative control se-
quences within 1% standard deviation from zero. As a result, we obtained 1,691 and 1,595
activating, 1,081 and 1,872 repressive, and 10,479 and 11,401 negative controls for the tiling
MPRA data generated from HepG2 and K562 cell lines, respectively (Fig. 1b).

For ease of reference, we will refer to the above MPRA training datasets as “LCL act”,
“HEPG2 act”, “K562 act”, “HEPG2 rep”, and “K562 rep”, respectively.
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2.2 MPRA regulatory hits are highly dependent on cell-type spe-
cific DNase-sensitive sites

As features in our machine learning predictive model, we used reference genomic and epige-
nomic annotations. We compiled one of the largest set of functional features consisting of
3171 functional genomic features uniformly processed based on the GRCh37/hg19 genomic
coordinates for each of those 150-bp training cases. These include:

• We used epigenomic annotations from 1,032 epigenomic signal tracks (H3K4me1, H3K4me3,
H3K36me3, H3K27me3, H3K9me3, H3K27ac, H3K9ac, DNase I hypersensitive) esti-
mated as -log p-values by MACS2 [29] across 127 cell types from the ENCODE/Roadmap
Consortium [10];

• We also used ENCODE ChIP-seq transcription factor binding peaks for 161 transcrip-
tion factors in various cell types (primarily from GM12878 and K562) as binary features
from the UCSC database [9];

• In addition, we used sequence features corresponding to regulatory motif occurrences.
We compiled datasets of 1,934 position weight matrices (PWM) for 602 transcription
factors [25] and we searched their occurrences across the genome. This resulted in
1,934 occurrences, which we treated as binary feature for motif presence or absence for
every one of these regulators;

• Moreover, because repeats have been widely hypothesized to be predictive of regulatory
binding and often shown to be correlated with expression activities [ref]. We therefore
also included 43 binary features for each of the repeat families from Repeat Maskers
database from the UCSC database;

• 1,032 epigenomic signal tracks (H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3,
H3K27ac, H3K9ac, DNase I hypersensitive sites) estimated as -log p-values by MACS2
[30] across 127 cell types from the ENCODE/Roadmap Consortium [10];

• Lastly, since evolutionary conservation is highly correlated with regulatory function, we
also included evolutionary conservation track from phast46way placental conservation
score obtained from the UCSC database.

We then sought to gain insights as to what the features that are most informative in
MPRA predictions. We first investigated how well each individual feature correlate with
MPRA regulatory hits to gain some biological insights on what dictate the MPRA outputs.
The top scoring features in each MPRA training set were biologically meaningful in terms
of the cell types and regulatory factors (Fig. 2). For example, DNase-sensitive sites were
among the most significant features for each MPRA dataset (highlighted in Fig. 2). In
addition, repressive regulatory hits in the tiling MPRA dataset were strongly enriched for
transcriptional repressor REST and RFX5 binding motifs in HepG2 cells, as independently
highlighted in the original paper [22].
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2.3 Sequence motifs are the predominant features in MPRA pre-
dictions

To further examine the underlying importance of each functional genomic feature, we priori-
tized the features based on the magnitude of the linear coefficients from the elasticnet model
trained on all 3171 functional genomic features. Although the presence of a DNase-sensitive
site was among the most significantly enriched features in the above single-feature test,
known sequence motifs, repeat families, and TF binding sites exhibit the higher importance
in the multiple regression elasticnet model (Fig. 3). Motifs are known to play important
roles in expression regulation [18, 22, 25]. We further ascertained our results by comparing
our motif rankings with published motif hits in the tiling array analyses (i.e., Supplementary
Table 2 from [22]). We observed a significantly higher cumulative overlap between motifs
ranked by the observed coefficients and the published MPRA motif hits [22] compared to
a background constructed by permuting coefficients among the motifs (Fig. 4a). Most top
motifs that we found are also active in both HepG2 and K562 cell lines (Fig. 4b).

2.4 MPRA regulatory hits are highly predictable using functional
genomic and sequence features

Importantly, we found that MPRA regulatory sequences are highly predictable in many
cases based on functional genomic and sequence features, indicating that we can indeed
make genome-wide predictions from those trained models. Specifically, we evaluated elastic-
net using the 3,171 genomic annotations as features, gapped k-mer SVM (gkm-SVM), and
elasticnet gkm (i.e., using the 3,171 genomic annotations plus predictions from gkm-SVM as
an additional feature) on their abilities to classify withheld data in a 22-fold cross-validation
procedure, where each fold corresponds to a distinct chromosome. Most methods demon-
strated comparable performances (Fig. 5). Elasticnet, the regularized linear model (i.e.,
regularized linear regression with L1/L2 norm), surpassed the sequence-based gkm-SVM in
predicting activating regulatory hits from the tiling data. In particular, elasticnet achieved
90% AUC of ROC (AUROC) and 67% AUC of precision-recall (AUPRC) on the HepG2
tiling data and 93% AUROC and 72% AUPRC on the K562 data, compared to 88% AU-
ROC and 63% AUPRC on the HepG2 tiling data and 91% and 67% on the K562 data from
gkmSVM (Supplementary Table S2). Elasticnet-gkm did not improve performance over
elasticnet in predicting tiling MPRA signals. On the other hand, elasticnet gkm and gkm-
SVM perform better than elasticnet on the non-tiling eQTL-LCL data. Thus, there is no
single method that performs the best in all three datasets.

Due to the imbalance of positive and negative data within each dataset, AUPRC is
provide additional important metric to evaluate the method performance. Also, the various
MPRA training datasets contained different proportions of positive and negative training
examples, which made cross-platform comparison difficult based on AUPRC. In this regard,
we included AUROC up to 5% false positive rate (FPR) (Fig. 5b) and noted that the relative
performance was qualitatively consistent with all metrics. On the other hand, repressive
regions were much more difficult to predict, with lower performance among all methods
possibly due to various reasons (Fig. 5a,b, Discussion).
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2.5 Testing performance is platform and cell-type dependent

We found that our approach also works in cross-platform predictions, indicating that the
trained model can generalize to unseen data. Specifically, we trained the three classification
methods on one dataset and applied them to predict regulatory hits in another dataset. We
compared the power of each trained model (method + training dataset) based on an AUROC
up to 5% FPR (Fig. 5c) and summarized the results as follows.

1. The trained models conferred reasonable power when predicting unseen data in the
relevant context. For example, elasticnet trained on HepG2 act data achieved close to
2% AUROC up to 5% FPR on predicting K562 act, which is slightly worse than the
AUROC from the cross-validation of the same model on K562 act;

2. The elasticnet model trained on the 3,171 functional genomic data performed generally
better on predicting unseen activating testing cases than on predicting repressive hits;

3. The gkm-SVM and elasticnet gkm, using sequence features, conferred reasonable per-
formance not only in predicting the same regulatory activity (e.g., trained and tested
on activating data) but also on predicting opposite regulatory activity in the same cell
type (e.g., trained on activating hits in HepG2 and tested on repressive hits in HepG2);

4. The performance is platform-dependent – models trained on tiling data (i.e., K562 and
HepG2) performed better on predicting on tiling signals than they did on non-tiling
signals (i.e., LCL);

5. Models trained on the blood cell-line K562 data performed slightly better than models
trained on the liver cell line HepG2 data in predicting targets in the other blood cell-line
LCL data and vice versa.

2.6 Scoring common variants using the trained MPRA models

We extended the utility of MPRA to infer genome-wide regulatory potentials, we trained our
machine learning model on each of the five MPRA datasets and then use them to score all
common variants. We observed discriminative power of our model in distinguishing common
variants in the tested regulatory regions and a large number of untested common variants
that exhibit promising regulatory scores. Specifically, We chose elasticnet-gkm as the rep-
resentative model due to its competitive performance observed above. We then applied our
model trained on the full MPRA datasets to score 14.3 million common variants from SNPdb
(version 146) obtained from the UCSC browser, effectively constructing a novel genomic
tracks indicative of regulatory potentials learned from the MPRA data (Supplementary
Table S5; Materials and methods). We first verified that variants located within the
training MRPA regulatory sequences exhibited significantly higher prediction scores than
those of the remaining variants from each model (Fig. S3).

Moreover, we assessed the fraction of putative regulatory common variants with scores
above the median prediction scores of the observed regulatory hits from each MPRA ex-
periment. Overall, 0.21% and 2.6% of the common variants are predicted to be regulatory
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depending on the trained models and yet only lower than 0.0083% and 0.033% of the com-
mon variants are covered by any the current MPRA training regulatory sequences from
either tiling and non-tiling MPRA data, respectively (Supplementary Table S4). Thus,
potentially a large number of regulatory variants were untested by the assays.

2.7 Functional implication of predicted regulatory scores of com-
mon variants

Remarkably, the predicted regulatory scores are negatively correlated with the minor allele
frequency of SNPs and are highly discriminative of SNPs harbored in eQTL from GTEx
in various tissues, and SNPs reported in GWAS catalogue relative to background SNPs
(Fig. S4, S5, S6). Specifically, we assessed the functional implications of the predicted
MPRA potential (PMP) scoring system based on minor allele frequency (MAF), GTEx
eQTL data (version 6) [26], and SNPs from GWAS catalog (v1.0 2016-01-22) [27]. Notably,
none of these categories was present in the training data. We observed that the variants
among the top 1% quantile of the predicted scores exhibited significantly lower MAF (FDR<
10−70) than the remaining SNPs (Fig. 6a). Additionally, SNPs in GTEx whole-blood eQTL
exhibit significantly higher PMP than the background SNPs with matched MAF (Fig. 6b).
Similarly, the PMP scores are also highly enriched for SNPs from GWAS catalog compared
to other SNPs with matched MAF (Fig. 6c). Together, the results support the utilities
of our predictive model in providing a functional prior on common variants to facilitate
downstream more focused functional investigation.

3 Discussion

MPRA is a promising technology that can efficiently detect thousands of regulatory sequences
simultaneously. However, the factors that influence the activity as measured in the assay are
not well characterized. In this study, we analyzed two recent MPRA experimental datasets
that were generated using naturally occurring eQTLs from human population, in LCL, and
based on DNase-sensitive sites and chromatin states in HepG2 and K562 cells. Training
machine-learning classifiers to predict regulatory hits from the MPRA data using sequence
and functional genomic features, allowed us to uncover meaningful predictive features and
achieve promising predictive power. Single-feature tests suggested that one of the most
discriminative features for the MPRA data was the presence of DNase-sensitive sites in the
regulatory region in question. However, conditioning on DNase-sensitivity in a multiple
regression model revealed known sequence motifs, repeat families, and TF binding as the
most predictive features based on their coefficients. Most top motifs are active in both
HepG2 and K562 cell lines perhaps implying fewer cell-type dependent effects (Fig. 4b).
This contrasts with the cell-type specific enrichment of DNase-sensitivity that we observed
above.

Although the elasticnet model using functional genomic features performed quite well
in most cases, gkm-SVM [28] that uses only the 150-bp sequence information by operating
on a gapped k-mer feature space conferred comparable performance. Thus, the regulatory
elements that drive MPRA activities can be mostly predicted from the underlying sequence
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with some small improvements when augmented with functional genomic data. This may be
due to the intrinsic properties of regulatory sequence elements as opposed to the dynamic
aspects of the regulatory activities implicated in the cell-specific epigenomic data. Another
possibility could be that the assays were performed on episomes, which may exhibit different
epigenomic landmarks compared to the reference epigenomic annotations obtained from the
native chromosomes. Nonetheless, as demonstrated above, we gained biological interpreta-
tions by explicitly leveraging the functional genomic features to predict the MPRA outputs
than solely based on sequence.

Compared to predicting activating regions, repressive regions were much more difficult to
predict, with lower performance among all methods. It is possible that repressive elements
may require a specific context or co-factors to have an effect, more so than activating ele-
ments. Also, our knowledge database (functional genomic features) for repressive elements
is more limited than for enhancer elements.

In terms of testing performance by training on one MPRA dataset and testing on another
MPRA dataset, we found that the models using sequence features (gkm-SVM and elasticnet-
gkm) compared favorably to the model using only the genomic annotations (elasticnet),
implying that the cell-invariant regulatory elements are predominantly implicated in the
sequence. Interestingly, models trained on predicting activating (repressive) regulatory hits
conferred better or similar prediction accuracy in predicting repressive (activating) regulatory
hits in the same cell type compared to models trained on predicting activating/repressive
regulatory hits in the other cell type. This implies that some cell-specific regulatory elements
may serve both as activating and repressive sites, which has also been previously observed
with a simpler overlapping strategy [22]. The results also imply that different cell types may
have different sets of sequence features that dictate regulatory elements. Specifically, the
models trained on one cell type performed better in predicting regulatory hits in the same
cell types than they did in different cell types. For example, gkmSVM trained on HepG2 rep
performed better in predicting HepG2 act than the model trained on K562 rep. In summary,
MPRA prediction accuracy is perhaps a reflection of the corresponding MPRA resolution,
the amenabilities of the cell types, the MPRA designs, barcoding differences, and the data
calibration procedures.

When extending our model to examine the regulatory potential of common variants not
tested in the MPRA datasets used, we found that tens of thousands of untested common
variants exhibit high regulatory potential, low MAF, and high frequency of being eQTL and
GWAS SNPs. Thus, the results imply that (1) there is a certain evolutionary constraint
imposed on the putative regulatory variants (indicated by the lower MAF); (2) despite
the different nature of the in-vitro MPRA experiments, the underlying regulatory elements
implicated in the data are consistent with those from the naturally occurring eQTL among
the populations; (3) PMP scores can serve as a useful functional prior for risk GWAS variant
prioritization. Therefore we suggest specific functional follow-up on these potentially disease-
causing but untested common variants, with perhaps a more specific prioritization or re-
weighting scheme. On the other hand, we must also cautiously interpret the results due to
the small fraction of positive cases (14-23%), which may affect the robustness of the final
trained models and the co-linearity existing among the features that we used. With large-
scale MPRA data becoming increasing available, similar supervised learning approaches will
prove extremely useful in giving insights to experimental outcomes and helping subsequent

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/110171doi: bioRxiv preprint 

https://doi.org/10.1101/110171
http://creativecommons.org/licenses/by/4.0/


experimental designs. Thus, we envision our computational approach will serve as a general
workflow for future MPRA designs and data explorations.

4 Materials and methods

4.1 Construction of training data from MPRA experimental data

4.1.1 MPRA data derived from eQTL

The first main training MPRA dataset that we used was testing 3,642 eQTLs discovered
by Geuvadis et al., after performing RNA-seq on lymphoblastoid cell lines (LCLs) from
individuals of European (EUR) and West African (YRI) ancestry [21]. In total, there were
29,059 150-bp regions that contain either the lead SNPs based on the eQTL analysis or
SNPs with perfect linkage-disequilibrium (LD) with the lead SNPs. We formulated the
MPRA prediction as a binary classification task. Positive and negative training cases were
created as follows. We selected 150-mers with Bonferroni-adjusted p-values < 0.01 based on
differential analysis comparing RNA counts with plasmid counts [21]. We then filtered out
the 96 sequences with negative fold-change (i.e., RNA counts lower than plasmid counts),
resulting in 2,770 “Regulatory hits” hits. The 18,100 150-mers within one standard deviation
of the mean fold-change were classified as negative training cases (Fig. 1b).

4.1.2 MPRA tiling data derived from chromatin-states

The other MPRA training datasets were derived from a pool of 15,720 295-bp DNase I
hypersensitive sites detected in four cell types (a few of the DNase sites were tiled more than
once), namely HepG2, H1hesc, K562, and Huvec, contributing 3,930 sites each [22]. The
selection of these sites was based on the 25 chromatin states of the ChromHMM model [22].
Each of the 15,720 295-bp regions was tiled by 31 145-bp oligos with 140-bp overlap (5-bp
offset) between consecutive oligos. Slightly fewer than 487,320 sequences (31 × 15, 720 =
487, 320) were successfully synthesized and tested in HepG2 and K562 cells. Sharpr-MPRA
was developed to infer the transcriptional activity at a nucleotide resolution, conditioned on
the observed MPRA signals, resulting in 4,637,400 data points (15, 720 × 295 = 4, 637, 400)
per cell type [22].

To construct confidence negative (non-regulatory) and positive (activating and repressive)
training cases, we fit two 2-component Gaussian mixture models (GMM) on each tiling
array dataset to obtain data points belonging to transcriptionally activating and repressive
components with high statistical confidence. Specifically, to fit the activating component,
we first filtered out repressive regulatory hits by fitting a k-means model with k = 3 on the
dataset and subsequently removed data points assigned to the cluster exhibiting the lowest
mean (i.e., negative mean). We then fit a two-component GMM on the remaining data points
with an expectation-maximization (EM) algorithm using the ‘mixtools’ R package [29], where
the initial mean and standard deviation of each component were estimated from k-means
with the initial mixing proportion equal to 0.5. After the EM algorithm converged within 1e-
8, we obtained the lowest value as the activating threshold among the data points belonging
to the activating mixture component (i.e., component with the greater Gaussian mean) with
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posterior probabilities greater than 0.9. Because our dataset was 1-dimensional, selecting
data points above this threshold as the positive training examples is equivalent to choosing
activating regulatory hits with false discovery rate < 0.1. To choose repressive training
examples, we first removed the data points in the above k-means cluster (k = 3) with the
highest center (i.e., activating cluster) and performed the same procedure as above except
that we chose the posterior cutoff to be 0.95 based on the fact that the distribution mode of
the tiling data is slightly left shifted from zero (Fig. S1).

To account for the random initialization of the k-means, we repeated the above proce-
dures 500 times and took the average over the thresholds. We then selected the max-scoring
nucleotide positions from each 295-bp region based on these thresholds, referred to as “an-
chors”, with the inferred activities at 90% and 95% posterior confidence corresponding to
activating and repressing regions, respectively. We then added 75-bp up-stream and 74-bp
down-stream to each anchor, resulting in 1,691 (1,595) and 1,081 (1,872) activating and
repressive non-overlapping 150-mers in HepG2 (K562) cells. Finally, the 10,479 (11,401)
negative 150-mer negative control examples in HepG2 (K562) were selected from the posi-
tions that exhibited activities within 1% standard deviation around but not equal to zero,
and not overlapping with the activating or repressive training cases (Fig. 1b). Initial results
showed subsequent model performance was not sensitive to the small changes in thresholds
(e.g., within 0.5 or 1.5 standard deviation) in defining the negative training cases. Notably,
models trained to predict activating and repressive regions used the same negative control
training cases.

4.2 Single-feature tests

We tested enrichment for the regulatory hits for each feature. Specifically, we performed
a hypergeometric test for each binary features using the R built-in function phyper and a
simple logistic regression for each continuous feature using glm(y x, family=bionomial,

data). We calculated p-values from log ratio tests by the summary function. Enrichment
scores were defined as the -log10 P-value from each test.

4.3 Classification models

To construct the MPRA classifiers, we trained a gapped k-mer SVM (gkm-SVM) to pre-
dict the regulatory hits using sequence features, and elasticnet using the above-mentioned
functional genomic 3,171 features. For each method, we used an existing R package, and
default settings were used unless noted otherwise. In particular, we used the R package
gkmSVM [13, 28] to classify regulatory hits based on all possible 10-mers from the 150-mer
training sequences; we used R package glmnet [31] with ‘family’ parameter set to “binomial”,
alpha to 0.5, and lambda determined by cross-validation (cv.glmnet). We also trained a
separate “elasticnet gkm” using both the 3,171 functional genomic features and the sequence
feature score as fitted by the gkm-SVM model.
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4.4 Method evaluations

To evaluate each method, we performed N-fold cross-validation. We divided the training
datasets into 22 folds, each corresponding to one of the 22 chromosomes. Each method was
trained on 21 folds and validated on the remaining fold. Thus, each example was assigned a
prediction score when in the validation fold. To evaluate classification performance, we used
the R package ROCR [32] to calculate the area under the curve (AUC) of receiver operating
characteristic (ROC; AUROC), precision-recall (PRC; AUPRC), and the AUROC up to 5%
false positive rate.

4.5 Scoring common variants using the MPRA-trained models

We downloaded 14,328,088 common variants from UCSC database (http://hgdownload.
soe.ucsc.edu/goldenPath/hg19/database/snp146.txt.gz). We positioned each SNP at
the center of a 150-bp (position 76) window to construct the 3,171 features consistent with
the featurization procedure described in the main text. We then applied the models trained
on each of the full MPRA datasets to score each SNP.
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Figure Legends

Figure 1: Overview of the MPRA computational analysis. (a) Experimental design and
generation of the MPRA datasets used in this study: the LCL dataset derived from eQTLs
(left) and tested in a lymphoblastoid cell line (LCL) and the the DNase-tiling dataset derived
from 25 chromatin states and tested in HepG2 and K562 cells (right). After transfection of
plasmids containing each regulatory sequence into appropriate cells, transcribed RNA was
quantitated, and the fold-change ratio of RNA over plasmid was calculated to quantitate the
extent of the corresponding sequence regulating transcription. For the tiling MPRA datasets,
a sequence could be either activating or repressive whereas the eQTL-MPRA dataset only
tests for activating regulatory hits in LCL. (b) Constructing confidence training data. We
created confidence positive and negative training cases. The density plots display the cor-
responding distribution of each MPRA dataset and the total numbers of positive/negative
training cases that went into the supervised training procedures. The x-axis for the two
tiling datasets is the Sharpr-MPRA regulatory activity scores (SHARPR) computed from
tiled reporter data [22].

Figure 2: Feature enrichment. Top 50 features with the highest enrichment score for each of
the five MPRA datasets. These features include epigenomic signals, ChIP-seq transcription
factor (TF) binding, TF sequence motifs (Supplementary Table S1). The top features are
divided into the features significantly enriched in the (a) transcriptionally activating MPRA
hits (i.e., HepG2 act, K562 act, LCL act) and (b) transcriptionally repressive MPRA hits
(i.e., HepG2 rep and K562 rep).

Figure 3: Top features in MPRA predictions. For each cell type and each experiment,
features were ranked based on the corresponding linear coefficients that were fit by the
elasticnet model. Colors indicate different functional categories including ENCODE TF
bindings (encode), known sequence motifs (motif), and repeat families (repeat).

Figure 4: Comparison with known motifs from previous tiling MPRA analysis [22]. (a)
Cumulative overlapped counts of published MPRA motif hits as a function of decreasing
linear coefficients from the elasticnet model. Observed and permuted are colored in red and
cyan, respectively. (b) Top hits that were also found in the known motif hits from previous
study [22].
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Figure 5: Power analysis. (a) Area under the ROC and PRC curves of each model for pre-
dicting regulatory hits in each of the five MPRA datasets. All performances were evaluated
in cross-validation (Materials and methods). (b) AUROC up to 5% false prediction rate.
Sensitivity is defined as the percentage of true positives out of all positive cases. (c) Test-
ing performance. Each model trained on one MPRA dataset was tested on another MPRA
dataset. The performance was assessed by AUROC up to 5% FPR to facilitate cross-platform
comparison.

Figure 6: Functional implication of the predicted regulatory scores among the 14.3 million
common variants. (a) Distribution of minor allele frequency (MAF). We separated the
common variants by variants with high predicted regulatory score (top 1% quantile) and
remaining variants. Cumulative density functions of the MAF of the two SNP groups are
displayed above. The p-value of the MAF difference between the two SNP groups was
calculated using the Wilcoxon rank-sum test, and is shown on each graph. As a control,
prediction scores were randomly shuffled among variants and the analysis was repeated, as
shown on the right. (b) Functional enrichments for the GTEx eQTL SNPs. We compared the
predicted MPRA score of eQTL SNPs in whole-blood with background SNPs with matched
MAF. (c) Predicted score of GWAS SNPs. Similar to (b) but comparing SNPs from the
GWAS catalog with the remaining SNPs.
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Supplementary Information

Supplementary Fig.

Figure S1: Tiling MPRA SHARPR score distribution for HepG and K562 cells.

Figure S2: Illustration of fitting 2-component GMM to tiling array data to obtain confidence
activating and repressive regulatory training examples.

Figure S3: Predicted regulatory score of common variants in the training MPRA sequences
compared with common variants outside of the training MPRA sequences.

Figure S4: Statistical confidence of differential minor allele frequency between high-scoring
common variants and low-scoring common variants. We divide the common variants into two
groups, one containing SNPs with predicted scores above top 1% quantile and one containing
the remaining SNPs. We tested the difference between the two group by Wilcoxon rank-sum
test for each of the 15 models (model+training data). Statistical scores displayed in the bar
plot are the -log p-values adjusted by Benjamini-Hochberg method. As control, we randomly
shuffled the scores from each model and repeated the same analysis (i.e., “ rand”).

Figure S5: We compared the predicted MPRA score of eQTL SNPs in each tissue with back-
ground SNPs with matched minor allele frequency. Heatmap color indicates the statistical
significance of the -log p-values adjusted for multiple testing by BH-method.

Figure S6: Predicted score of GWAS SNPs. (a) Similar to Fig. 5 but using all of the GWAS
SNPs from GWAS catalog. The barplot displays statistical signicance of the -log p-values
adjusted for multiple testing by BH-method.
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Supplementary Table

Table S1: All candidate features considered.

Table S2: Cross validation performance.

Table S3: Testing performance.

Table S4: Summary of predicted regulatory variants by each trained model.

Table S5: Predicted MPRA score from 15 models for all of the 14.3 million common variants.

Download link http://people.csail.mit.edu/yueli/mpra/TableS5_comVar.gz
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Figure 3
a. Linear e�ects of genomic features in predicting 
activating regulatory sequences in LCL, HepG2 and K562 cells

b. Linear e�ects of predicting repressive sequences in K562 & HepG2
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Figure 6
a. High-scoring SNPs exhibit lower minor allele frequency
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