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Genome wide association studies (GWAS) provide a powerful approach for un-11

covering disease-associated variants in human, but fine-mapping the causal variants12

remains a challenge. This is partly remedied by prioritization of disease-associated vari-13

ants that overlap GWAS-enriched epigenomic annotations. Here, we introduce a new14

Bayesian model RiVIERA-beta (Risk Variant Inference using Epigenomic Reference15

Annotations) for inference of driver variants by modelling summary statistics p-values16

in Beta density function across multiple traits using hundreds of epigenomic annota-17

tions. In simulation, RiVIERA-beta promising power in detecting causal variants and18

causal annotations, the multi-trait joint inference further improved the detection power.19

We applied RiVIERA-beta to model the existing GWAS summary statistics of 9 au-20

toimmune diseases and Schizophrenia by jointly harnessing the potential causal enrich-21

ments among 848 tissue-specific epigenomics annotations from ENCODE/Roadmap22

consortium covering 127 cell/tissue types and 8 major epigenomic marks. RiVIERA-23

beta identified meaningful tissue-specific enrichments for enhancer regions defined by24

H3K4me1 and H3K27ac for Blood T-Cell specifically in the 9 autoimmune diseases25

and Brain-specific enhancer activities exclusively in Schizophrenia. Moreover, the26

variants from the 95% credible sets exhibited high conservation and enrichments for27

GTEx whole-blood eQTLs located within transcription-factor-binding-sites and DNA-28

hypersensitive-sites. Furthermore, joint modeling the nine immune traits by simulta-29

neously inferring and exploiting the underlying epigenomic correlation between traits30

further improved the functional enrichments compared to single-trait models.31
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1 Introduction32

Genome wide association studies (GWAS) can help gain numerous insights on the genetic33

basis of complex diseases, and ultimately contribute to personalized risk prediction and pre-34

cision medicine [1–4]. However, fine-mapping the exact causal variants is challenging due to35

linkage disequilibrium (LD) and the lack of ability to interpret the function of noncoding36

variants, which contribute to about 90% of the current GWAS catalog (40.7% intergenic37

and 48.6% intronic; [5]). On the other hand, several lines of evidence have been proposed38

to help interpret non-coding genetic signals, in order to gain insights into potential regula-39

tory functions. In particular, epigenomic annotations can pinpoint locations of biochemical40

activity indicative of cis-regulatory functions [6, 7]. Indeed, comparison with genome-wide41

annotations of putative regulatory elements has shown enrichment of GWAS variants in42

enhancer-associated histone modifications, regions of open chromatin, and conserved non-43

coding elements [3, 6, 8–12], indicating they may play gene-regulatory roles. These enrich-44

ments have been used to predict relevant cell types and non-coding annotations for specific45

traits [6,9,13]. Furthermore, many complex traits potentially share causal mechanisms such46

as autoimmune diseases [14,15] and psychiatric disorders [16,17]. Thus, methods that jointly47

model the intrinsic comorbidity implicated in the GWAS summary statistics of the related48

traits may confer higher statistical power of causal variants detection. Recently, several49

methods were developed to utilize the wealth of genome-wide annotations primarily pro-50

vided by ENCODE consortium to predict causal variants and novel risk variants that are51

weakly associated in complex traits. Pickrell (2014) developed a statistical approach called52

fgwas that models association statistics of a given trait and used regularized logistic func-53

tion to simultaneously learn the relevant annotations. To account for LD, fgwas assumes at54

most one causal variants per locus via a softmax function. Kichaev et al. (2014) recently55

developed a multivariate Gaussian framework called PAINTOR, which allows for more than56

one causal SNP but at most three to be located within a single locus by considering all of57

the combinatorial settings [18]. Chung et al. (2014) used a maximum likelihood framework58

called GPA to infer driver variants shared among multiple traits by modeling the corre-59

sponding GWAS p-values as Beta distributions with an option of using one or more sets60

of annotations to improve the power detecting causal variants [19]. Although useful, these61

methods are often designed to simultaneously operate on a small number of independent62

annotations due to some computational constraints. Moreover, most methods only operate63

on one trait at a time whereas exploiting the correlation between traits at the epigenomic64

annotation level may prove useful for shared causal mechanisms that go beyond the level of65

individual variants.66

In this article, we describe a novel Bayesian framework called RiVIERA-beta (Risk67

Variant Inference using Epigenomic Reference Annotations to model Beta likelihood of68

GWAS summary statistics p-values). The main novelty of RiVIERA-beta is the ability to69

perform efficient Bayesian inference of the intrinsic causal signals across multiple traits while70
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simultaneously inferring and exploiting enrichment signals and their correlation between71

traits over hundreds of tissue-specific epigenomic annotations. We achieve this efficiently72

via stochastic sampling of loci and powerful Hamiltonian Monte Carlo sampling of model73

parameters [20]. We first use simulation to demonstrate the utility of RiVIERA-beta in74

prioritizing driver variants and detecting functional epigenomic annotations. We then apply75

RiVIERA-beta to some of the most well-powered GWAS datasets, consisting of 9 immunolog-76

ical disorders from ImmunoBase [15] and Schizophrenia 2014 data from Psychiatric Genomic77

Consortium [21]. To infer tissue-specific epigenomic enrichments, we utilize the largest com-78

pendium of epigenomic annotations to date from ENCODE/Roadmap Consortia, consisting79

of 848 annotations including 8 major epigenomic marks across 127 distinct cell types [7].80

This allows us to revisit the GWAS of these 10 common complex disorders by inferring their81

underlying regulatory variants implicated at the tissue-specific epigenomic contexts.82

2 MATERIALS AND METHODS83

GWAS summary statistics84

The GWAS summary statistics for the nine immune diseases were obtained from ImmunoBase85

(March 17, 2015) [15]. The nine diseases are: Autoimmune Thyroid Disease (ATD), Celiac86

Disease (CEL), Juvenile Idiopathic Arthritis (JIA), Multiple Sclerosis (MS), Narcolepsy87

(NAR), Primary Biliary Cirrhosis (PBC), Psoriasis (PSO), Rheumatoid Arthritis (RA),88

Type 1 Diabetes (T1D). We imputed the p-values of un-genotyped SNPs using FAPI and89

1000 Genome European data (Phase 1 version 3) [22]. We then obtained the p-values of90

SNPs that fall within the pre-defined risk loci available from ImmunoBase for each of the91

9 immune traits. For all analyses, we filtered out risk loci or variants in the MHC regions92

or sex chromosomes X and Y. The Schizophrenia 2014 (SCZ2) summary data containing93

642846 observed and imputed SNPs were obtained from Psychiatric Genomic Consortium94

(PGC) [21]. Among these, 54132 SNPs fall within the 105 SCZ-associated loci of the au-95

tosomes (chr 1-22) defined by PGC (we filtered out the 3 loci on chromosome X). Table 196

summarizes the total number of SNPs and risk loci for each individual GWAS that were97

subject to the proposed fine-mapping analyses.98

Roadmap epigenome data99

Roadmap epigenome data were obtained from Roadmap epigenomic web portal (March,100

2015). Peaks were defined if their p-values were below 0.01 (i.e., following the definition of101

“Narrow Peaks” [7]). In total, there are 848 epigenome tracks, including 8 epigenomic marks102

namely H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3, H3K27ac, H3K9ac and103

DNase I in in 127 cell or tissue types, which were grouped into 19 categories [7]. To associate104

each SNP with the annotations, we overlapped their genomic coordinates with each bigWig105

epigenome track making use of the R packages rtracklayer and GenomicAlignments. SNPs106

that fall within a peak of an annotations will have value 1 otherwise 0 for that annotation.107

The resulting matrix is a Vd × K input matrix containing the epigenomic values across108

K = 848 marks for each of the Vd SNPs in disease d.109
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Running existing fine-mapping software on simulated data110

fgwas111

The software fgwas [23] (version 0.3.4) were downloaded from GitHub. We prepared the112

input for fgwas (1) the Z scores calculated as the t-statistics of the linear coefficients of113

the genotype of each variant fitted separately by least square regression on the simulated114

continuous phenotypes (Materials and methods) and (2) 100 discretized epigenomic an-115

notations at p < 0.01. To enable fine-mapping, we issued -fine flag and specify the region116

numbers for each SNP in the input file as required by the software. As part of the outputs117

from fgwas, we obtained ‘PPA’ and ‘estimate’ for the causal variants and influences of each118

epigenomic annotations, respectively.119

GPA120

GPA (0.9-3) [19] was downloaded from GitHub and run with default settings. Same as above,121

we set the annotations to one at p-value < 0.01 and 0 otherwise. To test for trait-relevant122

annotations, we followed the package vignette. Briefly, we fit two GPA models with and123

without the annotation and compared the two models by aTest function from GPA, which124

performs likelihood-ratio (LR) test via χ2 approximation, and obtained the enrichment scores125

as the -log10 p-value.126

PAINTOR127

PAINTOR (version 2.1) was downloaded from GitHub [18]. As suggested in the docu-128

mentation, we prepared a list of input files for every locus including summary statistics as129

t-statistics, LD matrices, and binary epigenomic annotations. We ran the software with130

default setting with assumption of at most two causal variants per locus. We then extracted131

the ‘Posterior Prob’ and ‘Enrichment.Values’ as the model predictions for causal variants132

and causal annotations, respectively.133

Details of RiVIERA-beta Bayesian model134

Inference of empirical prior πvd135

We first define the empirical prior function of a variant v being associated with disease d as136

a logistic function:137

πvd = [1 + exp(−[
∑
k

wkdevk + w0d])]
−1 (1)

where wkd ∈ wd denotes the linear coefficient or the influence of the kth epigenomic mark138

affecting disease d and w0d is the linear bias.139

We assume that epigenomic causal effect wkd follows a multivariate Gaussian distribution
with zero mean and unknown covariance:

wkd ∼ N (0,Λ−1w ) (2)

Λw ∼ W(Λ0, ν0) (3)
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where Λw is a D×D inverse covariance matrix Λw = Σ−1w to model the pairwise epigenomic140

correlation among D diseases. It follows a Wishart distribution with identity matrix as prior141

(i.e., by default, we assume aprior no correlation between the target traits) and ν0 = 0 (i.e.,142

by default, we did observe any samples aprior that are indicative of the correlation between143

any two diseases being modeled). The hyperparameters can be easily modified to incorporate144

prior belief on the correlation between any two diseases of interests.145

Additionally, the bias w0d follows a Gaussian distribution with unknown variance and
mean determined based on our prior belief of the causal fraction π0:

w0d ∼ N (logit(π0), λ
−1
0d ) (4)

λw0d
∼ Γ(α0, β0) (5)

where logit(π0) = log π0
1−π0 . By default, we set π0 to 0.01, implying that 1% of the SNPs in146

the risk loci are expected to be causal when no functional enrichment. We set α = 0.01 and147

β = 0.0001 to enable a broad hyperprior for w0d.148

Notably, wkd can be interpreted as enrichment coefficient for annotation k in disease d,149

where a positive wkd will increase the causal prior πvd when evk = 1. During the training,150

however, wkd may become negative, which makes the interpretation difficult. Thus, we151

constrain wkd to be non-negative values, which involves imposing infinitely high potential152

energy for negative wkd. More details are described in Supplementary Text 1.153

Inference of variant causality cvd given prior πvd and model parameters µd, φd154

Because the target association variable avd for variant v in disease d represents p-values,
which are continuous and restricted to the interval (0, 1), we assume that it follows a Beta
distribution with unknown mean µd and unknown precision φd:

avd ∼ B(µd, φd) (6)

Note that we re-parameterize Beta density function from the traditional “rate” p and “shape”
q parameters, and instead use mean µ = p/(p + q) and precision φ = p + q, as per [24, 25].
Specifically, the density function of association variable avd is defined as follows:

f(avd;µd, φd) =

Γ(φd)

Γ(µdφd)Γ((1− µd)φd)
a
(µdφd−1)
vd (1− avd)(1−µd)φd−1 (7)

Further, we let the mean µd and precision φd follow Beta and uniform prior, respectively:

µd ∼ B(µ0, φ0) (8)

φd ∼ U(0, φmax) (9)

where the hyperparameters (µ0, φ0) reflect apriori belief on the p-value signal of a causal155

variant. By default, we set µ0 = 0.1 and φ0 = 2. If φmax =∞, φ follows an improper prior.156

Because it is unlikely to have a very large φ, by default, we set φmax to 1000. Notably, as157

long as φmax is large, the inference results remain the same with different φmax values.158
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With the prior p(cvd|wd, ev) ≡ πvd and likelihood p(avd|µd, φd) ≡ f(avd;µd, φd) estab-
lished, the posterior probability of association (PPA) [26] of variant v being causal for disease
d then follows:

p(cvd|avd, πvd) =
p(avd|cvd)p(cvd|wd, ev)∑

v′∈Vb p(av′d|cv′d)p(cv′d|wd, ev′)
(10)

where Vb represent all variants within locus b. The 95% credible set Cbd for each locus b is159

the minimal number of SNPs v′ ∈ Cbd in the locus such that
∑

v′∈Cbd p(cv′d|av′d, πv′d) ≥ 0.95.160

Joint posterior distribution161

The complete likelihood density function treating cvd as missing values is defined as:

L =
∏
v,d

f(avd, πvd, cvd, |ev, µd, φd)

=
∏
v,d

[πvdp(avd|µd, φd)]cvd(1− πvd)(1−cvd) (11)

The logarithmic joint posterior density function is then:

log p(Θ|D) = log f(µ, φ,W,Λw, λ0d|E, cd, πd, ad)

∝ log f(Λw|Λ0, ν0) +
∑
d

log f(λ0d|α0, β0)

+ log f(W|Λw) +
∑
d

log f(w0d|µw0 , λ0d)

+ log f(µd|µ0, φ0) + log f(φd)

+
∑
v,d

log f(avd, πvd, cvd|ev, µd, φd) (12)

In principle, causality is inferred by integrating out all nuisance parameters:

p(cvd|ad, evd) =

∫
f(cvd|ad, ev, µd, φd,wd,Λw)

f(µd, φd,wd,Λw|ad, ev)dµd, φd,wd,Λw (13)

which is not tractable. We employ Markov Chain Monte Carlo (MCMC) to sample from the162

joint posterior.163

Markov Chain Monte Carlo164

We use Gibbs sampling [27] to sample the precision matrix Λw of epigenomic effects from165

the posterior distribution. Specifically, Gibbs sampling requires a closed form posterior166

distribution. Due to the conjugacy of the Wishart prior of epigenomic precision Λw to the167

multivariate normal distribution of epigenomic effect W, the posterior of the epigenomic168

precision matrix Λw also follows Wishart distribution [28]:169

Λw|W ∼ W((Λ−10 + S)−1, ν0 +K) (14)
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where S is the sample variance of W, i.e., S = WTW.170

Similarly, we sample λ0d from Gamma posterior distribution:171

λ0d|w0d ∼ Γ(α0 + 0.5, (β0 +
(w0d − µw0)

2

2
)−1) (15)

To sample epigenomic effects wd, prior bias w0d, causal mean µd, causal precision φd for172

disease d = 1, . . . , D, we employ a more powerful gradient-based sampling scheme namely173

Hamiltonian Monte Carlo (also known as hybrid Monte Carlo) (HMC) [20, 29], exploiting174

the fact that the joint posterior of our model is differentiable with respect to the model175

parameters µd, φd, wkd, w0d (Supplementary Text S1). Finally, after discarding t% models176

accepted before the burn-in period (default: t=20%), we obtain the Bayesian estimates of177

PPA by averaging the corresponding values computed over the T ′ individual models accepted178

throughout the T MCMC runs.179

Bayesian fold-enrichment tests for epigenomic annotations180

Due to co-linearity among the epigenomic annotations, directly using wkd to assess the epige-
nomic enrichment for annotation k may be misleading. We propose an heuristic approach
to assess the log fold-enrichment of the full prior model over the alternative prior with the
effect of annotation k for disease d removed (i.e., wd\k, wkd = 0):

fkd = log

∫
p(wd)

p(cd|wd, ev)

p(cd|wd\k, wkd = 0, ev)
dwd (16)

≈ 1

T ′

T ′∑
t=1

log
1

|Cd|
∑
v∈Cd

p(cvd|w(t)
d )

p(cvd|w(t)
d\k, w

(t)
kd = 0)

(17)

where p(cvd|w(t)
d , ev) is the logistic prior based on Eq 1, Cd is the union of all the 95% credible181

sets across loci for disease d: Cd =
⋃
b Cbd. Notably, under the optional constraint that182

wkd ≥ 0, fkd is always positive, which directly translates to fold-enrichment of annotation k183

conditioned on all the other annotations k′ 6= k. The 95% Bayesian credible interval for fkd184

are obtained from the T ′ MCMC runs. The significance of each annotation k is determined185

based on the ranking of its lower bound fkd (i.e., the 2.5% quantile of fkd).186

Alternatively, we can estimate the fold-enrichment for each annotation simply based on187

the ratio of estimated fraction of causal variants in an annotation evk over the fraction of188

all of the variants in that annotation
∑

v cvevk/
∑

v cv∑
v evk/V

, where cv is the PPA for SNP v. This189

is more efficient and accurate when the underlying causal variants were randomly sampled190

from the annotations as done in the simulation.191

Stochastic gradient updates per locus192

Directly updating model parameters based on the gradients of all GWAS loci at each MCMC193

iteration is inefficient and results in poor HMC acceptance rate. Instead, at each MCMC194

update, we randomly sample one locus and update the model parameters (which are shared195

across loci) based on that locus. We find this approach quite efficient in capturing meaningful196
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causal properties such as causal signals and relevant epigenomes that are shared across all197

risk loci. Together, we outline the overall algorithm of the proposed Bayesian model in198

Algorithm S2 (Supplementary Text S1).199

GWAS simulation200

To assess the power of the proposed fine-mapping model in identifying causal variants and201

compare it with existing methods, we implemented a simulation pipeline adapted from [18].202

Briefly, the simulation can be divided into three stages (1) simulate genotypes based on203

the haplotypes from 1000 Genome European data (phase 1 version 3) using HapGen2 [30]204

(Supplementary Fig. S1); (2) simulate epigenomic enrichments and subsequently sam-205

ple causal variants accordingly using 100 Roadmap annotations selected from each of the206

19 categories of primary tissue/cell types (Supplementary Fig. S1); (3) simulate liability207

phenotype plus the random noise to obtain the desired heritability (fixed at 0.25) and sub-208

sequently the GWAS summary statistics in terms p-values and z-scores via ordinary least209

square regression. Details are described in Supplementary Text.210

Gene ontology enrichment analysis211

We obtained the latest gene annotations from Ensembl database (version 80) programmat-212

ically via biomaRt package [31], which resulted in 10,801 gene ontology (GO) terms in213

biological processes (BP). To assign SNPs to genes, we performed lift-over to map the SNPs214

from hg19 to hg38 using rtracklayer [32] and assigned each SNP to a gene if it is located215

within 35 kb up and 10 kb downstream of that gene. The resulting Ensemble gene identifiers216

were matched with those genes in each GO-BP category. We then performed hypergeomet-217

ric tests on each GO-BP term for all of potential in-cis target genes of the SNPs in each218

trait and adjusted for multiple testings using Benjamini-Hocherg family-wise Type I error219

correction method [33]. For the 9 immune traits, the enrichment signals are strong so we set220

the cutoff at FDR < 0.005; for Schizophrenia, we set FDR < 0.2.221

RiVIERA-beta software222

RiVIERA-beta is available as an open-source R package with documented functions and223

walk-through examples described in the vignette. Most functions were implemented in C++224

by integrating Rcpp and RcppArmadillo libraries [34]. These libraries enabled us to apply225

RiVIERA-beta to large matrices very efficiently with complied code and having much lesser226

memory overhead than a näıve R implementation. RiVIERA-beta is available at Github227

(https://github.mit.edu/liyue/rivieraBeta).228

3 RESULTS229

RiVIERA model overview230

The fundamental hypothesis of our model is that non-coding disease associations are driven231

by disruption of regulatory elements of common activity patterns (e.g., motifs of sequence-232
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specific regulators), thus leading to gene expression changes and ultimately phenotypic233

changes at the cellular or organism level between case and control individuals. Our RiVIERA-234

beta Bayesian model aims to infer the probability that a given variant v is a driver for disease235

d by modeling the corresponding GWAS association statistic for that variant using a vec-236

tor of genome-wide epigenomic annotations (ev). Given a set of B risk loci, the inputs to237

RiVIERA-beta are GWAS summary statistics in terms of p-values and a set of discrete or238

continuous epigenomic annotations (Fig. 1a). In this study, we used binary signals to ease in-239

terpretation of the functional enrichments. We train RiVIERA-beta by repeatedly sampling240

one locus at each iteration to efficiently learn the intrinsic (i.e., locus-independent) causal241

signals. Fig. 1b depicts RiVIERA-beta as probabilistic graphical model [35]. The observed242

variable of our model is the GWAS association values (in terms of p-values) avd for each243

variant v in each disease d. We assume that avd follows a Beta distribution with unknown244

mean and dispersion parameters. The effect of each annotation on each trait is learned as245

global annotation-by-disease weight matrix w, which follows a D-dimensional multivariate246

normal distribution with zero mean and D × D disease-disease covariance Λw. The prior247

probability πvd that a variant v is causal in disease d is essentially a linear combination of the248

weighted genomic annotations ev, which reflects the disease-associated active histone marks249

and DNA accessibility in the 127 cell types (Materials and methods). The outputs of the250

model (Fig. 1c) are (a) posterior probability of association (PPA) cvd that variant v is causal251

in disease d; (b) the Bayesian fold-enrichment estimates fkd based on the ratio between the252

full prior model with all annotations over the null prior model with all annotations except253

for annotation k.254

Method comparison using GWAS simulation255

The goal of the simulation is to evaluate the model’s power to predict (1) causal variants256

in each locus; (2) the relevant annotations that determine which variants are causal. To257

this end, we simulated GWAS summary statistics based on 1000 Genome European data258

(Phase 1 release 3) (Supplementary Fig. S1) and 100 representative epigenomic annota-259

tions (Supplementary Fig. S1) (Materials and methods). We performed a series of260

power analyses over 500 simulation runs.261

First, we examined how well the posterior probabilities were calibrated by taking the cred-262

ible SNPs that contribute to 95% posterior mass inferred by each method (Supplementary263

Fig. S2). As expected, when our model assumption of single-causal variant per locus holds,264

we observe that our model is well calibrated (Fig. S2), where the 95% credible SNPs indeed265

correspond to approximately 95% of the causal variants. When there are more than one266

causal variants per locus, the 95% credible SNPs include on average 50% the true causal267

SNPs (Supplementary Fig. S2)268

Because the number of variants within the credible set differs depending on the concen-269

tration of the posterior probabilities inferred by each method, we sought to control that270

bias by evaluating the proportion of identified causal variants as a function of the absolute271

number of selected variants. When the assumption of one-causal-variant-per-locus holds, we272

observed comparable or better performance of RiVIERA-beta compared to existing meth-273

ods (Fig. 2). As expected, when the assumption is violated, our current model is second274

to PAINTOR, which is able to infer multiple causal variants per locus (Supplementary275
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Fig. S3). We also examined the correlation between the functional enrichments estimated276

by each method and the underlying epigenomic enrichments that were used to simulate the277

causal variants. The performance of the four methods are comparable with the proposed278

model achieving a slightly better correlation (Supplementary Fig. S4).279

Applications to immune and psychiatric disorders280

To demonstrate RiVIERA-beta in a real-world application, we used it to investigate 10281

complex diseases including 9 immune diseases with summary statistics obtained from Im-282

munoBase [15] and Schizophrenia from Psychiatric Genomic Consortium (PGC) [21] (Table 1).283

We used 848 epigenomic annotations from ENCODE/Roadmap consortium (Materials and284

methods) to build a functional prior for each trait to aid fine-mapping and conduct cell-type285

specific epigenomic enrichment analyses [7]. We first applied RiVIERA-beta to the 10 traits286

separately to examine individual causal signals and then demonstrated RiVIERA-beta’s ca-287

pability to operate on the 9 immune traits and the improved detection power compared to288

the single-trait model.289

RiVIERA-beta detected meaningful tissue-specific enhancers in test290

GWAS traits291

We first sought to confirm the validity of the model through its ability to identify mean-292

ingful cell-types or tissues for each trait. To this end, we selected the top 5% (i.e., the top293

43) of the 848 annotations for each disease based on the corresponding Bayesian estimates294

of the lower bounds of the 95% credible interval (Supplementary Table S1; Materials295

and methods). We then performed hypergeometric tests on enrichments of each of the 19296

categories grouped by Roadmap consortium based on the cell types and tissues [7]. Indeed,297

we observed a significant enrichment for Blood & T-cell for all 9 immune disorders but not298

for Schizophrenia, which exhibits exclusive epigenomic enrichments in the Brain category299

(Hypergeometric adjusted p-values < 0.05) (Fig. 3a). Additionally, we also observed mod-300

est enrichments for B-cell and Thymus tissue in the 9 immune traits. We then examined the301

enrichment status for the 8 epigenomic marks. Indeed, enhancer marks namely H3me4me1302

and/or H3K27ac are most significantly enriched among all 8 marks (q-values < 0.05). In303

addition, H3K4me3 associated with promoter is also enriched in most immune traits. In-304

terestingly, we also observed a modest enrichment of H3K9me3 in Schizophrenia but not in305

the immune traits. We further ascertained the enrichment results by re-running RiVIERA-306

beta on the permuted data matrix and observed diminishment of the meaningful enrichment307

observed above (Supplementary Fig. S5).308

SNPs in the credible set exhibit promising regulatory potentials309

The variants in the credible set are more enriched for functional elements. Inspired by310

the promising tissue-specific enhancer enrichment results obtained above, we refined our311

RiVIERA-beta model by re-training it on the top 5% (or 43) annotations on each trait312

using the same GWAS data. For each locus in each trait, we then constructed 95% credible313

set (Supplementary Table S2; Materials and methods). On average, we were able314
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to construct a rather small credible set ranging from 4 to 25 SNPs per locus for the 10315

traits (Table 1). As a comparison, we extracted the same number of SNPs with the most316

significant GWAS p-values from each locus. For ease of reference, we named our SNPs in the317

credible set as “credible SNP” and the GWAS counterpart as “GWAS SNP”. Compared to318

GWAS SNPs, the credible SNPs exhibit substantially higher averaged placental conservation319

scores (phastCons46way obtained from UCSC database) across most traits (Fig. 4 CONS).320

Moreover, the credible SNPs were significantly enriched for expression quantitative trait321

loci (eQTL) that are in the regulatory regions. Specifically, we obtained in total 806,847322

GTEx whole-blood eQTL-SNPs (version 6) [36] and retained 122,549 and 23,973 eQTL-323

SNPs that overlap with transcription factor binding sites derived from 1,772 TF recognition324

motifs [37] and digital genomic footprints (DGF) at 6-bp resolution derived from DNaseI data325

in CD cells using method described in [38], respectively as well as 6,743 eQTL-SNPs that326

overlapped with both the TFBS and DGF regions. We then performed hypergeometric tests327

to assess the significance of overlap between the credible/GWAS SNPs and the regulatory-328

eQTL SNPs. Indeed, our credible SNPs exhibit much higher enrichments for those eQTL-329

SNPs, suggesting their regulatory potentials elucidated based on the enhancer activities by330

our proposed RiVIERA-beta model (Fig. 4; Supplementary Table S3).331

Gene-centric analysis revealed enrichment for meaningful biological332

processes333

Genes adjacent to the SNPs in credible sets are significantly enriched for disease-specific334

biological processes. In particular, we observed significant enrichments of many immune-335

related processes for the in-cis genes for which the SNPs in the credible set are within336

35 kb upstream or 10 kb downstream (Fig. 5; Supplementary Table S4; Materials337

and methods). For instance, regulation of T cell homeostatic proliferation, regulation of338

interferon-gamma-mediated signaling pathway, and regulation of type I interferon-mediated339

signal pathways are among the most significantly enriched GO terms in 5 or 6 out of the 9340

immune traits. In contrast, the enrichments for Schizophrenia are dominated by GO terms341

involving synaptic processes and neuronal differentiation/development. The enrichment re-342

sults are mostly consistent between the credible genes and the genes derived from the same343

number of SNPs chosen based on the GWAS p-values (GWAS-genes).344

Intriguingly, we observed a highly significant enrichment for keratinization (GO:0031424)345

and epidermis (e.g., skin) development (GO:0008544) exclusively for Psoriasis. In particular,346

17 genes among the 241 credible genes belong to keratinization and epidermis development,347

which contain in total 49 and 121 genes, respectively (q < 9 × 10−18, q < 2 × 10−10).348

Indeed, Psoriasis is mainly characterized as a chronic skin disease with epidermal hyper-349

proliferation [39, 40]. In contrast, there are only 6 out of 157 GWAS-genes are defined in350

each of two GO categories (q < 0.001).351

To further ascertain the RiVIERA-beta fine-mapping results, we created a visualization352

scheme for each of the 469 risk loci across 10 traits examined (Supplementary Fig. S6).353

Fig. 6 displays two example loci for Type 1 diabetes (chr17: 37383069-38239012) and354

Schizophrenia (chr7: 104598324-105062839). The upper panel displays the RiVIERA-beta model355

prior, the genetic signals from GWAS -log p-values, and RiVIERA-beta PPA. Red colored356
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and diamond shape points are GTEx whole-blood eQTL SNP and top SNPs included into357

60% credible set (we used 60% to not clutter the plot with the remaining SNPs in the 95%358

credible set that exhibit low PPA). Intuitively, SNPs with high PPA exhibit both prominent359

genetic and epigenetic signals. Thus, to infer causal variants, RiVIERA-beta efficiently took360

into account not only the GWAS signals derived from the genetic data but also the prior361

signals mainly driven by the weighted epigenomic profiles. The middle panel illustrates the362

cumulative density for each epigenomic profiles weighted by the tissue-specific enrichment363

estimates.364

Consistent with the overall enrichment results (Fig. 3), we observed prominent enrich-365

ments for the enhancer regions predominantly in blood T cells for all of the 9 immune traits366

and brain tissue for Schizophrenia. The bottom tracks display the external functional infor-367

mation (i.e., not in the training data) including conservation score, genes, transcription factor368

binding sites based on motif matches that may further aid variant selection for downstream369

experimental validation (please refer to Supplementary Table S2 for detailed information).370

We also visualized the signals within the of Psoriasis-associated risk region ch1:152536784-371

152785170, which harbors genes involved in keratinization and epidermis development as372

mentioned above. Interestingly, as an exception of most other immune-susceptible loci, the373

underlying epigenomic profiles exhibit prominent signals not only in blood T cell but also374

in epithelia enhancer regions (Supplementary Fig. S6). However, the associated SNPs375

exhibit rather weak genetic signal perhaps due to lower allele frequencies.376

Multi-trait causal inference improved functional enrichments in377

most immune traits378

Exploiting epigenomic correlation between highly related immune diseases improved func-379

tional enrichments in several traits. We performed multi-trait causal inference over all of the380

9 autoimmune traits by jointly applying our RiVIERA-beta to 364 risk loci concatenated381

together from the 9 immune traits using 174 epigenomic annotations which was a union of382

unique annotations from the top 43 annotations for each individual trait. We focused only on383

the 9 immune GWAS (i.e., leaving out Schizophrenia) because they commonly utilized the384

same genotyping platform namely ImmunoChip. The multi-trait GWAS summary statistics385

triggered RiVIERA-beta to infer the disease covariance matrix and sample disease-specific386

epigenomic weights from the joint posterior with modified zero-mean multivariate normal387

prior that takes into account the sampled disease covariance (Materials and methods).388

As a results, RiVIERA-beta sampled correlated epigenomic weights between traits more389

frequently compared to the single-trait model.390

We constructed the 95% credible sets for each trait using the disease-specific PPA derived391

from the joint model and assessed the functional enrichments as above (Supplementary392

Table S6). Notably, the cross-trait model exploited 174 annotations as apposed to 43393

annotations used by the single-trait model. To examine whether the improved enrichments394

were due to the increased number of annotations, we re-ran a single-trait model for each395

of the 9 traits separately each using the 174 annotations. Compared to the 95% credible396

set constructed based on the single-trait causal inference using the top 43 annotations, we397

observed smaller 95% credible sets for 8 out of the 9 immune traits (Table 1), suggesting398
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that the mulit-trait joint inference further improved the model confidence in some of the399

highly related traits.400

More importantly, we observed a much more improved enrichments for the GTEx whole-401

blood eQTL SNPs located within open chromatin regions or digital genomic footprints in402

most of the immune traits (Fig. 7; Supplementary Table S5). Thus, the joint inference403

further improved the regulatory potential through following the Hamiltonian trajectory that404

is more consistent with the epigenomic correlation pattern between the related immune traits.405

We also repeated the GO enrichment analysis on the 95% credible set and found that the406

enriched GO terms were mostly immune-specific biological processes and consistent with the407

above single-trait analyses (Supplementary Fig. S7; Supplementary Table S7).408

4 DISCUSSION409

Understanding the genetic basis of complex traits hinges upon powerful integrative meth-410

ods to map genotypes to phenotypes [41]. Fine-mapping causal variants has been a highly411

active and fruitful research in the past several years [9, 18, 42–44]. However, most existing412

methods typically operate solely on genetic data by estimating each SNP of being causal413

conditioned on the lead index SNPs in the same LD block, which are typically approximated414

by the 1000 Genome data [9,15,45,46]. With the recent availability of large-scale functional415

genomic data provide by ENCODE/Roadmap consortia, there is an urgent need to incor-416

porate these valuable information in a principled way as a form of Bayesian prior. In this417

article, we describe a novel Bayesian fine-mapping method RiVIERA-beta to re-prioritize418

GWAS summary statistics based on their epigenomic contexts. The main contribution of419

RiVIERA-beta is the ability to systematically construct from a targeted set of susceptible420

loci a Bayesian credible set of SNPs, which exhibit plausible tissue-specific regulatory prop-421

erties implicated in the large epigenomic data compendium either in a single trait or across422

multiple traits.423

One benefit of using the raw epigenomic annotations rather than using the inferred signals424

such as ChromHMM [7] or GenoSkyline [47] states derived from the annotations is that425

it eases the interpretation of the actual relevant epigenomic marks in the relevant tissue426

types and facilitates downstream experimental efforts to assay the specific marks in the427

disease-specific cell types. However, the correlation of the epigenomic marks will make428

difficult estimating the underlying functional enrichments. Moreover, we choose to model429

the summary statistics rather than genotypes because it is not always possible to obtain430

individual-level phenotype-genotype data particularly for large-scale meta-analysis. Thus,431

effective methods based on summary statistics may benefit wider research communities than432

methods that solely operate on individual-level genotype data [18, 19, 23]. Moreover, our433

model requires only p-values because it uses Beta distribution to model the likelihood. In434

contrast, fgwas requires both the z-scores and the standard error from the linear regression435

used in the GWAS to estimate the Wakefield approximate Bayes factors. While some recent436

GWAS summary statistics include those information, there are many do not have z-scores437

and/or standard error of the linear model but only p-values (e.g., the ImmunoChip data438

we used in our studies for the 9 immune traits). When the standard error is not available439

in a given GWAS summary statistics, fgwas needs to be estimate it from the minor allele440
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frequency of a reference panel such as 1000 Genome, which may not be accurate depending441

the study cohorts. Additionally, modeling p-values via Beta density function only has more442

relaxing model assumption than modeling z-scores via normal density although both methods443

are highly effective in practice.444

Overall, SNPs included into the credible set exhibit both significant GWAS signal and445

high prior. In some cases, however, SNPs that were added to the credible set in each locus446

do not exhibit significant GWAS p-values (Supplementary Table S2,S6). This generally447

occurs when the genetic signals in those loci are weak relative to the SNPs in other loci448

for the same trait, and the model functional prior eventually dominates the SNP prioritiza-449

tion. Thus, we recommend considering these variants cautiously when designing downstream450

experiments.451

One important assumption of our model is that there is one causal variant per locus,452

which is reflected by the normalization of variants within each locus so that they sum to453

1 in order to obtain PPA and construct 95% credible sets [23]. When this assumption454

holds, the posterior probabilities are well calibrated (Supplementary Fig. S2). However,455

as demonstrated in our simulation, when this assumption is violated, the PPA is not well456

calibrated (Supplementary Fig. S2,S3). Other existing method such as PAINTOR [18]457

and CAVIAR [48] employ multivariate normal distribution to model all of the variants within458

a locus using LD reference panel estimated from 1000 Genome data as the covariance matrix,459

which allows inferring more than one causal variants per locus. While CAVIER used only460

summary statistics, PAINTOR is able to employ functional annotations to aid fine-mapping.461

Both methods require computing the likelihood density across a combinatorial set of causal462

configurations and therefore still needs to assume at most an arbitrarily small number of463

causal variants, typically below 10 causal SNPs per locus.464

As future works, we will explore potential ways to enable efficient inference of more465

than one causal variants per locus. Furthermore, we will also explore the potential gain466

of incorporating trans-ethnic data, which was effectively demonstrated by the trans-ethnic467

version of the PAINTOR model [49]. Moreover, in addition to modeling the epigenomic468

correlation between traits, variant prioritization may further benefit by jointly inferring the469

comorbidity at the individual SNP level [19], gene level [50], and/or pathway level [17].470

Together, we believe that RiVIERA-beta will serve as a valuable tool complementary to the471

existing methods in identifying novel risk variants through tissue-specific epigenome-aware472

fine-mapping as well as aiding the selection of the appropriate cell types and epigenomic473

marks for more focused investigations of the disruptions of chromatin states by the disease-474

specific causal variants.475
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Figure Legends603

Figure 1: RiVIERA-beta model overview. (a) Inputs to RiVIERA-beta are GWAS summary
statistics and epigenomic annotations for B risk loci. At a given iteration, the model samples
one locus and tries to learn the intrinsic causal signals implicated in the corresponding GWAS
summary data and epigenomic profiles. Highlighted variant is the causal variant based on
the simulated data. (b) The probabilistic graphical model representation of RiVIERA-
beta [35]. Variables for which distribution is defined are in circle. Epigenomic profiles are
treated as observed values with no circle. The variable in shaded circle are observed (i.e.,
GWAS association avd and variables in unshaded circle are unobserved. The variables in
red are observed and variables in blue are the variables of interest (i.e., causal indicator).
The two colored plates represent K annotations (red) and V variants (blue). We model the
GWAS association avd of variant v in terms of p-value sampled from Beta distribution with
unknown precision φd and mean µd, which respectively follow an uninformative prior and
a Beta distribution with hyperparameters µ0, φ0. The latent variable cvd indicates whether
variant v is causal in disease d. On top of it, we dedicate an empirical prior as a linear
combination of the epigenomic profile evk weighted by the epigenomic influence wkd, which
follows multivariate normal with zero mean and a D × D inverse covariance or precision
matrix Λ−1w , where D is the number of traits that are being modeled. The linear bias w0d

expresses the prior belief of the causal fraction π0 (default: 0.01). (c) Outputs from the
model are posterior probabilities of association (PPA) for each variant in each locus, the
95% credible set containing the minimal number of SNPs whose PPA sum to 0.95 or greater,
and the Bayesian estimates of the fold-enrichment of each annotation.

Figure 2: Model performance on simulated datasets. Proportion of causal variants were
identified by each method as a function of increasing number of top variants selected.

Figure 3: Predicted tissue-specific epigenomic enrichments in the 10 GWAS traits. (a).
Hypergeometric enrichment for each of the 19 primary tissue categories using the top 5% or
43 annotations out of the 848 annotations in total for each trait based on the lower bound
of the 95% credible interval of the Bayesian fold-enrichment estimates by our RiVIERA-
beta; model; (b) enrichments for the 8 epigenomic marks among the top 43 annotations
for each trait. Y-axis is the logarithmic q-values, which are the corrected p-values from
the hypergeometric tests for multiple testing across traits and tissue groups or marks by
Benjamini-Hochberg method [33]. On both plots, horizontal dashed bars indicate standard
statistical threshold of FDR < 0.05.
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Figure 4: Functional enrichments of credible SNPs. The top left panel displays the averaged
phastCons46way conservation scores for variants in the 95% credible set (cred snp) and the
same number of SNPs chosen based on GWAS p-values (gwas snp). The three other panels
illustrate hypergeometric enrichments in terms of the -log10 q-values corrected for multiple
testing over the 10 traits of the selected variants for GTEx whole blood eQTL located
within transcription factor binding sites based on sequence motif (TFBS) (eQTL+TFBS)
and genomic digital footprint (DGF) (eQLT+DGF), and eQTL in both TFBS and DGF
(eQTL+TFBS+DGF).

Figure 5: Gene ontology enrichments across the 10 traits. Rows are the GO biological pro-
cesses and columns are the 10 traits. Color intensities in each cell reflect the significance level
in terms of -log10 p-value. Asterisks indicate q-values above significant cutoff after correcting
for multiple testings (FDR < 0.2). GO names that match the pattern ‘synap|neuro|nerve‘
are colored blue to highlight their exclusive association with ‘Schizophrenia’ (also in blue).
Notably, GO terms ‘keratinization‘ and ‘epidermis development’ (highlighted in the red box)
are exclusively enriched for Psoriasis. Diseases were ordered based on hierarchical clustering
based on the Pearson correlation of their GO enrichment scores.

Figure 6: Visualization of fine-mapping results. Top track: the upper panel display the
RiVIERA-beta prior, genetic signals of GWAS -log10 p-values, and RiVIERA-beta PPA;
the middle track illustrates the cumulative density of weighted epigenomic profiles colored
based on the epigenomic group; the bottom tracks shows the conservation, gene annotations
(Gencode 19), transcription factor binding sites (TFBS), and SNP positions. The red colored
and bigger diamond plots indicate whole-blood GTEx eQTL SNPs and SNPs included into
the 60% credible set, respectively. For illustration purpose, only one risk locus for Type 1
diabetes and one for Schizophrenia are shown above. The full display of 469 risk loci were
in Supplementary Fig. S6.

Figure 7: Enrichments for eQLT using credible SNPs constructed from multi-trait joint
inference. Credible SNPs for each trait were constructed based on PPA inferred by the
joint RiVIERA-beta model over the 9 immune traits using 174 annotations, which are the
union of the top 43 annotations detected from each trait individually. We then assessed the
hypergeometric enrichments of the 95% credible sets for the GTEx whole-blood eQTL that
are within DNA hypersensitive sites as defined by the genomic digital footprint data [38].
We compared these enrichment scores derived from the multi-trait model (cred snp mt)
to the enrichments derived from the single-trait models either running on 43 annotations
(cred snp st43) or on the 174 annotations (cred snp st174). The latter was included to
control for the improvements due to the increased number of annotations (from 43 to 174).
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Tables604

Table 1: GWAS data summary

Abbrev Trait Total Loci gwSNPs cSNP st cSNPs mt
ATD Autoimmune Thyroid Disease 4206 8 630 38 49
CEL Celiac Disease 29784 39 2592 344 211
JIA Juvenile Idiopathic Arthritis 13427 22 3 440 223
MS Multiple Sclerosis 61360 104 2096 884 339
NAR Narcolepsy 1316 3 62 22 16
PBC Primary Biliary Cirrhosis 14573 19 2498 172 111
PSO Psoriasis 24832 34 457 305 171
RA Rheumatoid Arthritis 38207 78 470 1978 719
SCZ2 Schizophrenia 54132 105 5217 2481 NA
T1D Type 1 Diabetes 41945 57 2832 826 327

We investigated 10 GWAS traits as listed above. Abbrev: abbreviation of the trait names; Total: total
number of SNPs in the risk loci with imputed and observed summary statistics; Loci: total number of risk
loci for each trait; gwSNPs: SNPs that pass GWAS cutoff p < 5e-8; cSNP st: total number of SNPs that
are included into the 95% credible set based on single-trait risk inference using RiVIERA-beta; cSNP mt:
SNPs in 95% credible set constructed based on multi-trait joint risk inference using RiVIERA-betaacross
the 9 immune traits (without SCZ2).
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