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 10 

Abstract: Ischemic heart disease is globally the leading cause of death. It plays a central role in 

the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart 

failure, and sudden death. Here, we provide the first dissection of the gene expression changes in 

the live right atrial tissue, using single-nuclei RNA-seq and spatial transcriptomics. We investigate 

matched samples of the tissue and pericardial fluid and reveal substantial differences in disease-15 

associated gene expression in all cell types, leading to inflammatory microvascular dysfunction 

and changes in the tissue composition. Our study demonstrates the importance of creating high-

resolution cellular maps and partitioning disease signals beyond epicardial coronary arteries and 

ischemic left ventricle to identify candidate mechanisms leading to more severe types of human 

cardiovascular disease. 20 

One-Sentence Summary: Single-cell dissection of ex vivo heart biopsies and pericardial fluid in 

ischemic heart disease and heart failure  
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Main Text 

Since the first landmark study of the single-cell dissection of adult human hearts in 2020 (1), 

several papers describing the cellular composition of the heart (2-4) and its transcriptional changes 

in cardiovascular disease (5-9) have been published. Yet, the effects of cardiovascular disease on 

the right atrium have not been investigated, although the sinus node – the natural pacemaker of the 5 

heart – resides in the roof of the right atrium (10). Given its central role in the normal cardiac 

function, and the unknown mechanisms by which chronic cardiovascular diseases cause electrical 

and structural remodeling of the atrial myocardium, it is important to dissect the molecular biology 

of the right atrium in health and disease, to improve the understanding of how these common 

diseases predispose to problems, such as sinus node dysfunction and arrhythmias, and increase the 10 

risk of heart failure and sudden death (11-13). 

Ischemic heart disease is the leading cause of death globally according to the World Health 

Organization. It is commonly described as epicardial obstructive atherosclerotic coronary artery 

disease, although according to recent studies, fewer than one in five patients with known or 

suspected ischemic heart disease have obstructive disease (14-17). Instead, coronary 15 

microvascular dysfunction has been suggested as a major underappreciated and understudied 

condition underlying major cardiovascular diseases, including ischemic disease and arrhythmias, 

and shown to associate with more advanced disease and worse disease outcomes (17-22). 

Deciphering the role microvasculature plays in the disease manifestation and progression in 

functionally central parts of the heart seems imperative. Nevertheless, earlier studies have 20 

exclusively focused on the structural and functional abnormalities of epicardial arteries in patients 

with coronary artery disease, for these arteries are easily visible, whereas coronary 

microvasculature can only be studied indirectly (17). Coronary microvascular aberrations mediate 

ischemia and cause symptoms both in patients with obstructed and unobstructed coronary arteries 
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(23,24), and therefore, its effects are unlikely to be limited to the left ventricle, which is often seen 

as the epicenter of myocardial ischemia and cardiovascular disease. 

Here, we present a comprehensive single-cell atlas of the ex vivo right atrium in ischemic heart 

disease and heart failure. We use single-nuclei RNA-seq (snRNA-seq), spatial transcriptomics, 

and human primary cell models to dissect the right atrium in the presence and absence of the 5 

diseases, revealing inflammatory changes in the tissue in response to disease manifestation and 

progression. We follow the findings in matched samples of right atrial tissue and pericardial fluid, 

comparing changes in stable disease, acute myocardial infarction, and after recovery from the acute 

phase, exploring similarities, differences and potential interactions between the tissue and fluid 

cells. Our expression module-based dissection of the disease-associated genes highlights 10 

inflammatory modules in the vasculature and the pericardial fluid cells, suggesting a genetic 

component to the observed inflammatory changes in connection to microvascular dysfunction. 

Results 

The first expression map of the ex vivo right atrium 

We obtained ex vivo cardiac tissue biopsies from the right atrial appendage of 10 control 15 

individuals, 15 patients with ischemic heart disease (IHD), 9 with myocardial infarction (MI), 11 

with ischemic heart failure (IHF), and 3 with non-ischemic heart failure (NIHF, i.e., patients with 

no coronary artery disease) (Fig. 1a). We profiled the samples with snRNA-seq and processed the 

data utilizing our custom method for cardiac tissue (25), resulting in 296 682 nuclei that were 

grouped into 12 main cell types (Fig. 1b-f), using available marker genes (1-3) and gene ontology 20 

enrichments of biological processes (Fig. S1a). 

The distribution of detected cell types corresponded to expected ratios in the cardiac tissue (1-9), 

given the collection of all three layers of the heart wall – epicardium, myocardium, and 
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endocardium (Fig. 1a and Fig. S1b) – with cardiomyocytes (CM, 23%), endocardial endothelial 

cells (EEC, 30%), vascular endothelial cells (VEC, 10%), fibroblasts (FB, 17%), and mesothelial 

cells (MESO, 10%) as the main cell types (Fig. 1b and Fig. S1c).  

Further examination of the marker genes revealed several candidates that could help to identify 

the different cell types in spatial transcriptomics (Fig. 1c, f-g, and website, see Fig. S1d for 5 

instructions). For example, endocardial endothelial cells expressed several genes that allowed their 

distinction from vascular endothelial cells, including LEPR, NPR3, and PCDH15, whereas 

vascular endothelial cells expressed GRB10, PREX2, and VWF (Fig. 1d-f). We confirmed several 

of the marker genes with spatial transcriptomics, using a low-resolution technique (Visium, 10X 

Genomics) that captures 1-10 cells per spot (Fig. 1f), and a high-resolution technique (Molecular 10 

CartographyTM, Resolve Biosciences) to reach sub-cellular resolution (Fig. 1c and 1g), 

establishing specific marker genes for different cell types, such as CHRM2 for cardiomyocytes, 

PCDH7 for endocardial endothelial cells, ABCA6 for fibroblasts, PRG4 for epicardial mesothelial 

cells, and MPZ for Schwann cells (Fig. 1g). Remarkably, visualization of some of the best cellular 

marker genes identified in snRNA-seq, such as NPR3 for endocardial endothelial cells, failed due 15 

to low abundance and specificity issues in the high-resolution spatial mapping (Fig. 1e and Fig. 

S1e). 

High-definition map of the right atrial vasculature 

To identify vascular cell types and cell subtypes, we used a combination of known and novel 

marker genes distinguishing a total of 11 populations, many of which were previously 20 

incompletely recovered (Fig. 2a-c and Fig S1f-g) (1-3,26). We utilized the identified marker genes 

in spatial transcriptomics to characterize the cardiac vasculature – coronary arteries, arterioles, 

arterial and venous capillaries, and veins – in our samples (Fig. 2d-g) and confirmed the localized 

expression of KLF2 into the vascular endothelial cells (Fig. 2h). KLF2 is a mechano-activated 
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transcription factor that integrates hemodynamic and proinflammatory stimuli to maintain vascular 

homeostasis and integrity (27,28). Notably, in snRNA-seq, most of the vascular endothelial 

subtypes showed downregulation of KLF2 in the IHD group compared to control samples (Fig. 

2i), indicating the emergence of endothelial cell dysfunction in the cardiac vasculature, which has 

been shown to be critical in the initiation and progression of cardiovascular disease (29). 5 

Disease drives inflammatory microvascular dysfunction in the right atrium 

To dissect similarities and differences in cardiac cell function on pathway level across main cell 

types in the three groups (IHD, IHF, and NIHF), we determined the differentially expressed genes 

across all cell types and cell subtypes using Nebula (30) and interpreted the results using Ingenuity 

Pathway Analysis (IPA, Qiagen) (31) (Fig. 3a, data available at website). Among the most 10 

significant enrichments in IHD and IHF, were fibrosis for fibroblasts (e.g., ‘Rho’, ‘RHOGDI’ and 

‘Apelin’ signaling) and barrier disruption and hypertrophy for endocardial cells (e.g., ‘thrombin’, 

‘adherens junction’, ‘cardiac hypertrophy’, and ‘NFAT in cardiac hypertrophy’ pathways). In 

addition, both fibroblasts and endocardial endothelial cells were enriched for growth factors (e.g., 

‘HGF signaling’) and mesenchymal transition (e.g., ‘regulation of the Epithelial to Mesenchymal 15 

Transition (EMT) pathway’ and ‘regulation of the EMT by growth factors’), suggesting 

differentiation/activation of dysfunctional phenotypes, such as myofibroblasts (32), and transition 

to pathological state, such as endocardial dysfunction (33), that in early stage disrupts normal 

tissue function and later on contributes to progression of heart failure.  

The top pathways in cardiomyocytes and epicardial mesothelial cells were the same across all three 20 

comparisons, i.e., ‘EIF2 signaling’ ‘mitochondrial dysfunction’, ‘oxidative phosphorylation’, and 

‘sirtuin signaling’. A closer look into sirtuin pathway in cardiomyocytes across the three 

comparisons (IHD, IHF, and NIHF), revealed similarity across all conditions (Fig. 3b and Fig. 

S2a), suggesting accumulation of lipids, lipid peroxidation, and inflammation in the tissue due to 
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impaired mitochondrial function, metabolic changes, cardiac hypertrophy, and increased 

production of reactive oxygen species (ROS) and inflammatory mediators. To test these 

predictions in the IHF and control samples, we utilized spatial transcriptomics (Fig. 3c and Fig. 

S2b). Compared to control, the IHF tissue exhibited increased expression of many pro-

inflammatory mediators, such as TRBC2 – an immune response activator (34), and CCL5 – a 5 

chemoattractant for blood monocytes, memory T helper cells and eosinophils (35). In addition, the 

expression of key metabolic mediators and regulators, such as CD36, which mediates the uptake 

of long-chain fatty acids in cardiac tissue, and its regulator, nuclear receptor peroxisome 

proliferator-activated receptor alpha (PPARα), was reduced in IHF compared to control. Impaired 

synthesis of CD36 has been shown to shorten myocardial energy supply, resulting in insufficient 10 

fatty acid uptake and accumulation of toxic lipids, ultimately leading to heart failure (36-38). 

Consistent with the predictions, the expression of the key regulator of fatty acid and energy 

metabolism, peroxisome proliferator-activated receptor gamma (PPARγ) (39), was also decreased 

in the IHF compared to control sections (Fig. 3c and Fig. S2b). Cytokine screening from the patient 

serum samples confirmed the presence of many pro-inflammatory cytokines (Fig. 3d), including  15 

IL-1-associated cytokines, such as IL-1a, IL-1b, IL-6, IL-18, MIP1b, and CXCL1, 

chemoattractants and immune cell activators, such as IL-3, and IL-16, growth factors, such as 

MCSF, HGF (increased in HF) and VEGF (decreased in HF), and biomarkers for heart failure and 

left ventricular dysfunction, such as IP-10 (CXCL10, increased in HF), and MIG (CXCL9, 

increased in HF) (40).  IL-1 has been shown to contribute to all stages of atherosclerotic plaque 20 

life from initiation to rupture, although circulating IL-1 levels in patients rarely correlate with 

disease severity (41). For example, circulating levels of IL-1a and IL-1b can be below detection 

level even in high-risk patients, yet their neutralization reduces adverse effects and improves 

disease outcomes (42,43).  Here, IL-1a exhibited increased and IL-1b decreased presence in HF 
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group compared to control, although sample numbers were too small for statistical significance 

(Fig. 3d). Taken together, the results suggested cytokine-induced pro-inflammatory activation and 

resulting accumulation of immune cells close to vasculature, endocardium, and epicardium in HF 

samples, which was confirmed with immunostaining of CD68+ tissue macrophages from HF and 

control samples (Fig. 3e). 5 

As suggested by the serum cytokine levels (Fig. 3d), production of a potent angiogenic factor, 

VEGF (44), was found to be suppressed in cardiac tissue cells in all three conditions (IHD, IHF 

and NIHF), although induction of its regulator, hypoxia-inducible factor (HIF1a) was observed 

expectedly in ischemic (IHD and IHF) cardiomyocytes (Fig. S2c). Similar trend was observed 

across endothelial cell subtypes suggesting inhibition of VEGF-regulated angiogenesis (Fig. S3). 10 

Hypoxia-induced response patterns indicated endothelial activation across most subtypes and 

diseases, but endothelial movement and/or blood vessel maturation remained mostly inhibited, 

suggesting endothelial dysfunction and abnormal angiogenesis (Fig. S4). Similarly, consistent 

with the serum cytokine levels and spatial transcriptomics results (Fig. 3c-d), CCL2-, TNF-, and 

CCL5-induced vasoconstriction was increased across endothelial subtypes and diseases (Fig. S5). 15 

Taken together, the results suggested microvascular dysfunction with an inflammatory component. 

Closer look into the differential expression enrichments in the vascular cells and cell subtypes 

revealed high similarity with the other main cell types, having the same four pathways 

(‘mitochondrial dysfunction’, ‘oxidative phosphorylation’, ‘sirtuin signaling’, and ‘EIF2 

signaling’), top the most significant enrichments across all three conditions (Fig. 3f). To recreate 20 

endothelial dysfunction in an in vitro model, we exposed Human Umbilical Vein Endothelial Cells 

(HUVECs) to disturbed flow (d-flow, i.e., oscillatory non-laminar shear stress) (45). We compared 

these changes to changes observed in the human cardiac tissue and saw decreased mitochondrial 
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metabolic activity, and increased HIF1a activity, cardiac hypertrophy signaling, and pro-

inflammatory changes comparable to those in the tissue cells (Fig. S6a). To screen for potential 

intercellular mediators of the observed changes, we extracted overlapping cytokines from the three 

conditions (IHD, IHF, NIHF) and d-flow endothelial cells using Upstream Regulator analysis of 

IPA (Fig. 3g),  and found several cytokines that were measured from the patient serum, such as 5 

TNF, which was more abundant in HF patient samples compared to controls, IFNg, which was 

more abundant in controls, and general enrichment of IL-1-related factors (Fig. 3d). The analysis 

suggested IL-1b as a central regulator of the observed gene expression changes and a driver of the 

observed cytokine expression. To validate this finding, we performed RNA-seq from IL-1b-

stimulated Human Aortic Endothelial Cells (HAECs), confirming an IL-1b-centric interleukin 10 

network connecting the observed mediators in the cells (Fig. 3g and Fig. S6b). To further identify 

the potential regulators of the shared functional changes across cardiac cell types, we overlapped 

transcriptional regulators and microRNAs from Upstream Regulator analysis of IPA for the three 

conditions (IHD, IHF, and NIHF) (Fig. 3h). Among the top regulators were transcription factors 

BACH1, NRF2 (NFE2L2), and NRF1 and a co-activator PGC1a (PPARGC1A) (Fig. 3h), which 15 

are known regulators of mitochondrial function, metabolism, and cellular redox stress (46-49). 

Their interactive network (Fig. 3i) may thereby partially explain the observed pathway changes in 

the main cell types. The notion was supported by the data collected from IL-1b-stimulated HAECs 

(Fig. S6c), which illustrated a switch to anaerobic glycolysis, downregulation of mitochondrial 

biogenesis and metabolism, increased inflammation, ROS production, and hypertension signaling, 20 

highlighting suppression of SIRT1, PGC1a, and NRF2 as mediators of these events (Fig. 3i). 

Collectively, these data suggest that IL-1b, which has been shown to be a component of coronary 

plaques (50) and produced by activated endothelia, smooth muscle cells, fibroblasts, and immune 
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cells in the body (41), travels to RA and induces local production of inflammatory mediators (Fig. 

3j) and recruitment of immune cells (Fig. 3k). Accumulation of immune cells (Fig. 3c and 3e), 

lipids (Fig. 3b), and oxidative stress (Fig. 3b) are known predecessors of foam cell formation (Fig. 

3k) (51). 

Disease-driven immune cell accumulation causes chronic inflammation in the atrium 5 

To explore the inflammatory changes in the right atrium, we next characterized the immune cell 

populations (Fig. 4a) using previously established marker genes (Fig. 4b) (1-3,52-56) and GO 

term enrichments (website). The immune clusters consisted of rich populations of macrophages 

(MPs) and T cells, in addition to dendritic cells, B cells, and plasma cells. Spatial transcriptomics 

of the atrial tissue illustrated immune cell clusters that localized to epicardial mesothelium and 10 

vascular endothelium (Fig. 4c). The most prevalent immune cell population across all disease 

groups was macrophages (Fig. 4d). Other subtypes displayed more variability, suggesting increase 

in abundance from control to more severe disease (Fig. 4d). In spatial analyses, MP marker gene, 

CD163, co-localized with Infla-MP marker gene, LYVE1, with increased expression in IHF 

compared to control, consistent with previous findings (Fig. 3c and 3e), whereas LT-CD4 marker 15 

gene, IL7R, expression overlapped only partially with the MP marker genes, although similarly 

higher expression in IHF sections compared to control was observed (Fig. 4e and Fig. S7a).  

Chronic inflammatory response is part of adverse cardiac remodeling that precedes heart failure 

development (57). This remodeling is characterized by re-expression of the fetal gene program 

that includes natriuretic peptide B (NPPB) and α 1 skeletal muscle actin (ACTA1) (58), both of 20 

which were observed in the IHF sections (Fig. 4e and Fig. S7a). To a lesser amount, the genes 

were also expressed in the control sections and colocalized to the same areas of the section, 

indicating disease-associated changes in gene expression before clinical manifestation of the 

disease. However, strong immunoglobulin expression was only observed in the IHF, consistent 
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with chronic inflammatory state and accumulation of antibody deposits in the failing atrial 

myocardium.  

As a confirmation for the results in the microvasculature that suggested lipid accumulation and 

early stages of foam cell formation (Fig. 3), we detected two populations of Lipid associated 

macrophages (LAMs), out of which LAM1 indicated partiality to ischemic disease and LAM2 to 5 

NIHF (Fig. 4f). We confirmed the colocalization of an established LAM marker TREM2 (59) with 

lipid droplets in IHF sections and observed increased signal in IHF compared to IHD (Fig. 4g).  

Exploration of pathway enrichments for differentially expressed genes in the LAM populations 

revealed differences in the pathway numbers, their sharing, and in the enriched pathways 

themselves. Altogether, the LAM1 population enriched for 118 and LAM2 for 228 pathways (B-10 

H adjusted p-value < 0.05). 10% of the LAM1 pathways were not found from the LAM2 

populations, including ‘nitric oxide’, ‘inositol phosphate’ and ‘phosphoinositide signaling’ related 

terms, and ‘circadian rhythm’, ‘ferroptosis’, and ‘senescence signaling’ pathways (Data S1). In 

IHD, the top activated pathways (based on activation Z-score by IPA) were ‘sirtuin signaling 

pathway’, ‘protein kinase A signaling’, ‘eNOS signaling’, and ‘dilated cardiomyopathy signaling’ 15 

for the LAM1 population and ‘cardiac hypertrophy (enhanced)’, ‘phagosome formation’, ‘wound 

healing’ and ‘fibrosis signaling’ pathways for LAM2. Half of the enriched LAM1 pathways were 

shared with LAM2, including pathways for ‘oxidative phosphorylation’, ‘mitochondrial 

dysfunction’, ‘sirtuin signaling’, ‘estrogen receptor signaling’, and ‘glucocorticoid receptor 

signaling’, comparably with the main cell types (Fig. 3a, 3f, and Data S1). ‘Glucocorticoid 20 

receptor signaling’ was among the most significant enrichments in all but one LAM group (LAM2 

– IHF) (Fig. 4h and website), highlighting increased cytokine-mediated production of IL-1b, 

among other key pro-inflammatory mediators. The LAM1-specific pathways included ‘IL-1’ and 

‘IL-6 signaling’ among others, whereas LAM2-specific populations consisted of ‘neuronal’, 
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‘inflammatory’, ‘cardiac hypertrophy’, and ‘growth factor’ related pathways (Data S1). Only 34% 

of the LAM1 pathways in IHD were shared with the LAM1 pathways in IHF and none with NIHF 

(Fig. 4h and Data S1). LAM1s in NIHF only enriched for 11 pathways altogether, seven of which 

were shared with IHF. LAM2 populations shared more pathways between conditions (Fig. 4h and 

Data S1). For example, only 13% of the IHD-enriched pathways were unique to IHD, 27% were 5 

shared with IHF, 21% with NIHF, and 39% were shared by all three conditions. Overall, LAM2 

in IHF enriched for more pathways than the other two conditions and therefore also had more 

unique pathways. Collectively, the pathway enrichments in the LAM1 population consisted mostly 

of ‘extracellular signaling’, ‘metabolism’, and ‘senescence’ related terms, and in the LAM2 

population, of pathway terms that intersect with ‘cardiovascular disease’, ‘inflammation’, and 10 

‘cancer’, suggesting response to environmental cues for LAM1s and pro-disease signaling for 

LAM2s. 

Pericardial fluid cells reflect the changes in disease states 

Pericardial fluid is an enriched milieu of cytokines, growth factors, and cardiac hormones that 

reflect and regulate overall heart function. Despite the diagnostic and therapeutic potential, its cell 15 

composition has not been thoroughly examined with single-cell techniques (60) and matching 

tissue and fluid samples have not been explored. Given the detected accumulation of immune cell 

clusters to the epicardial mesothelium in spatial transcriptomics (Fig. 4c, 3c and 3e), we next 

decided to explore the cell populations in paired right atrial tissue and pericardial fluid samples of 

the IHD patients to gain insight into the potential interactions between the tissue and the fluid. 20 

Although the tissue biopsy comes from a specific site, the pericardial fluid is not specific to only 

one anatomical region but provides a more integrated view of the cardiac function.  

We focused on three different groups: patients with stable coronary artery disease who underwent 

elective surgery (stable CAD), patients with acute myocardial infarction (acute MI), and patients, 
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who had suffered infarction earlier in life (remote MI) to compare stable disease with acute phase 

and recovery from the acute phase. Using established marker genes, pericardial fluid was, 

expectedly, found to be enriched for immune cells (Fig. 4b and 4i-j). The cell proportions between 

the tissue and the fluid showed both similarities and differences (Fig. 4k). The largest population 

in both was macrophages, followed by lymphocytes and natural killer cells. Cardiac tissue-specific 5 

populations included LAMs, monocytes, and plasma cells, and pericardial fluid included 

populations of Ribo+MPs (i.e., MPs with increased expression of ribosomal genes), plasmacytoid 

dendritic cells (plas-DCs), and erythroblasts that were not detected in the cardiac tissue. Infla-MPs 

were proportionally larger population in the tissue compared to the fluid, whereas IFN-MPs were 

more predominant among the fluid immune cells.  10 

In the tissue samples, MP2 population seemed to be more prevalent in the control samples, whereas 

NKT-CD8 and infla-MPs were more abundant in stable CAD and MI groups (Fig. S7b). LT-CD4 

population was more numerous in the stable CAD and acute MI, but in remote MI the levels 

resembled control levels. In the pericardial fluid, MP, LT, infla-MP, and Treg proportions were 

more variable in the IHD groups compared to control group, suggesting active exchange between 15 

the tissue and the fluid (Fig. S7b). 

Differentially expressed gene enrichments were similar, although not identical, in the pericardial 

fluid and corresponding tissue with 66-68% of all enriched pathways being shared between the 

fluid and tissue cells in each of the three groups (Fig. 4l-m and website). Stable CAD and remote 

MI had 100% overlap in pathways enriched in each, both in fluid and tissue samples, although the 20 

rank order was a mix of stable CAD and acute MI in remote MI, likely due to its shared disease 

component with both groups (Fig. 4l-m, Data S1, and website). 12% and 18% of enriched 

pathways were unique to acute MI in fluid (63 unique pathways) and tissue (83 unique pathways), 

respectively, including terms related to ‘IL-1 signaling’ and ‘metabolism’ in the fluid and 
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‘secondary messenger signaling’, ‘interleukins’, and ‘metabolism’ in the tissue. In tissue, 

macrophages were the most active populations in all three conditions, promoting ‘immune 

response’, ‘intracellular and second messenger signaling’, and ‘cellular stress’ and ‘injury’ in 

stable CAD and ‘cardiovascular signaling’ and disease-specific pathways in acute MI, leading to 

glucocorticoid-mediated CCL2 and CCL3 production in both (Fig. S7c-d). CCL2 is a regulator of 5 

macrophage recruitment and polarization in inflammation (61) and CCL3 is an acute pro-

inflammatory recruiter and activator of leukocytes in the heart tissue, as well as an inducer of TNF 

and IFN production that is associated with cardiomyocyte injury, cardiac dysfunction, and delayed 

ventricular repolarization (62). 

To take a closer look into the pericardial fluid cells, we chose one of the most prominent 10 

specialized populations in the ischemic patients, IFN-MPs (Fig. 4k). Dissection of the co-

expression patterns in the IFN-MP population highlighted several functional modules, such as 

‘lymphocyte activation’, ‘cell migration’, ‘cytokine and interferon signaling’, ‘oxidative 

phosphorylation’, and ‘cholesterol metabolism’ (Fig. 5a and website). The proportion of the cells 

was generally lower in the tissue of stable CAD and MI patients and higher in their pericardial 15 

fluid, suggesting mobilization of the cells in the earlier and acute stages of the disease, whereas in 

the more advanced disease, the data suggested potential accumulation in the tissue (Fig. 5b). In 

spatial images (Visium), CXCL10, a marker gene for the IFN-MP population, was detected in IHF, 

clustering in the myocardium, but not in the control sections (Fig. 5c and Fig. S8a). CXCL10 (also 

known as interferon gamma-induced protein 10, IP-10) is a chemoattractant and polarizing factor 20 

for various immune cells, promoter of T cell adhesion to ECs, inhibitor of angiogenesis and a 

biomarker for heart failure and left ventricular dysfunction (Fig. 3d) (40, 63,64).  

In the higher-resolution spatial images, CXCL10 clusters were found in the vicinity of vasculature 

and endocardium, colocalizing with macrophages, lymphocytes, and the marker genes for infla-
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MPs (CLL8 and EGR2P) (Fig. 5d and Fig. S8b). In the vascular cells, module analysis confirmed 

the presence of an IFN module comprising several IHD-GWAS genes (Fig. 5e). The IFN module 

was present across all vascular cell subtypes and enriched for several pathways linked to ‘antigen 

presentation’, ‘cytokine signaling’, ‘interferon signaling’, and ‘defense and immune responses’ 

(Fig. 5f), confirming the connection between the vascular cells and the INF-responsive immune 5 

cells at the transcriptional level.  

Pathway analysis of the IFN-MPs in stable CAD, acute MI, and remote MI revealed high similarity 

between the stable CAD and remote MI groups, with almost identical pathways being enriched 

(B-H adjusted p-value <0.05) in both with similar activation Z-scores (Fig. 5g and website). For 

example, ‘3-phosphoinositide biosynthesis’, ‘cardiac hypertrophy (enhanced)’ and ‘estrogen 10 

receptor signaling’ pathways were among the top pathways in both stable CAD and remote MI. 

However, there were underlying differences in the pathway molecules. For instance, in the 

hypertrophy pathway of the remote MI, the analysis highlighted TNF, insulin-like growth factor 1 

and pro-inflammatory cytokines as main upstream molecules activating the signaling cascades, 

whereas in stable CAD, endothelin-1, TNF, and integrins were highlighted (data not shown). Acute 15 

MI enriched for similar pathways compared to stable CAD and remote MI, but the activation Z-

score was opposite in many cases and only two of the pathways, ‘autophagy’ and ‘AMPK 

signaling’, were significantly enriched (B-H adjusted p-value < 0.05). Dissection of the biological 

and disease-associated functions of the IFN-MPs suggested increased ‘blood cell activation’, 

‘recruitment’, ‘movement’, ‘adhesion’, ‘migration’, ‘engulfment’, and ‘atherosclerosis’ in stable 20 

CAD, decreased ‘lipid droplet accumulation’, ‘blood platelet aggregation’, ‘blood cell 

accumulation’, and ‘cell movement’ in acute MI, and increased ‘infection’, ‘cell movement’, ‘cell 

migration’, ‘proliferation’, ‘engulfment’, ‘angiogenesis’, ‘fibrogenesis’, and ‘vascular 

development’ in remote MI (Data S1). Central factors orchestrating these changes included IL-1b 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2022. ; https://doi.org/10.1101/2021.06.23.449672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

(stable CAD and remote MI) and IFNg (remote MI) (Fig. 5h) among other factors. Taken together, 

the results indicate that presence of IFN-MPs in the tissue correlates with advanced disease and 

chronic inflammatory state of the right atrium. Moreover, the data suggests that the IFN-MP 

population present in the pericardial fluid reflects the changes in the tissue function and responds 

to environmental cues of acute and chronic disease states.  5 

Disease-associated genetic variation affects disease-relevant modules across cell types 

Genetic studies on cardiovascular disease provide invaluable resources for understanding their 

causal mechanisms. However, currently discovered loci only explain a small fraction of disease 

heritability, indicating that additional contributors exist, and new approaches are needed for their 

discovery. In this study, we sought to dissect IHD-associated GWAS gene interactomes across 10 

different cell types using our newly developed module analysis method that combines coordinated 

gene expression changes across cell types together with GWAS-linked genes, forming functional 

modules of genes with similar expression patterns (all data can be explored at website). One of 

the genes highlighted by the module analysis was SVIL that was present both in the vascular and 

pericardial fluid cells (Fig. i-j) and resides in a GWAS locus on chromosome 10 that gives rise to 15 

two IHD-associated genes, SVIL and JCAD, that link to the same regulatory element bearing 

several IHD-associated variants (Fig. 5k). JCAD has been previously implicated in endothelial 

dysfunction, pathological angiogenesis, and atherosclerotic plaque formation (65), whereas the 

role of SVIL in cardiovascular disease remains unknown, but it may promote angiogenesis and 

epithelial to mesenchymal transition (66).  20 

In smooth muscle cells, SVIL resided in a module that enriched for ‘glycosaminoglycan’, 

‘proteoglycan’, and ‘chondroitin sulfate’ related pathways, whereas JCAD module consisted of 

three genes JCAD, CFAP36, and PALMD, which has been shown to regulate aortic valve 

calcification via altered glycolysis and inflammation (67) (Fig. 5i and Fig. S9a). Proteoglycans 
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regulate extracellular matrix composition and organization, partake in inflammatory processes 

through leukocyte adhesion and migration, and are central modifiers of ischemic and pressure 

overload-related cardiac remodeling that leads to heart failure (68). In pericardial cells, SVIL 

module enriched for ‘cell communication’, ‘intracellular signal transduction’, and ‘regulation of 

cell adhesion’ (Fig. 5j and Fig. S9b). For example, in T and NK cells the modules enriched for 5 

‘cell signaling’ and ‘communication’, in B-plasma cells for ‘T cell differentiation’, ‘activation’, 

and ‘signaling’, and in mesothelial cells, for ‘extracellular matrix organization’, ‘blood vessel 

development’, and ‘morphogenesis of an anatomical structure’ (Fig. S9c-f), indicating 

involvement in several cell-type-specific functions. 

Although genome-wide association studies (GWASs) successfully associate genomic loci with 10 

diseases, they are restricted in their ability to dissect complex causality, as they do not specify the 

causal variant(s). For example, the JCAD/SVIL locus investigated in this study associates 

significantly with IHD and several of the top associated variants reside in the regulatory elements 

that are active in the heart and coronary arteries (Fig 5i and Fig. S10a). To bridge the gap between 

GWAS association and biological understanding of underlying disease risk, we utilized our 15 

recently published EpiMap analysis (69), which suggested rs9337951 as the top candidate (p=1e-

17, Fig. 5i and 5l). To further identify individual causal variants, we tested each regulatory variant 

for its effect on STARR-seq reporter gene expression in HAECs and in primary human aortic 

smooth muscle cells (HASMCs) subjected to pro-atherogenic stimuli (IL-1b and cholesterol-

loading). Altogether, six regions of 200 bp were studied representing haplotypes that encompassed 20 

nine common variants and seven rare variants in the European population. Of these, two common 

variants, namely rs9337951 and rs1342150 and four rare variants including rs531337994, 

rs148641196, rs113622617 and rs193042870 exhibited allele specific enhancer activity (Fig. 5m 

and Table S1). To validate the regulatory effect of the identified common variants, we used 
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CRISPR technology to perturb the enhancer activity. First, we performed CRISPR mediated 

deletion of the regulatory elements in teloHAECs, resulting in 50-70% decrease in JCAD 

expression. This effect was strongest for the rs9337951, the top candidate suggested by the EpiMap 

analysis, likely due to its exonic location (Fig. S10b-f). Unfortunately, SVIL expression was not 

detected in the in vitro model despite its significant expression levels in cardiac endothelial cells, 5 

highlighting the importance of human tissue data in GWAS dissection (Fig. S10g). To ensure no 

mRNA sequence itself was targeted, we additionally performed CRISPR inhibition experiment 

where the regulatory elements were targeted with the transcriptional repressor dCas9-KRAB-

MeCP2. This approach resulted in similar effects for both targeted regions where on average 70% 

repression in JCAD expression was seen, thus confirming the role of variant-carrying enhancers 10 

in gene regulation (Fig. S10d-f).  

In addition to EpiMap results, motif analysis (70,71) suggested that rs148641196, a rare variant 

with the highest allele-specific activity in reporter assay (Fig. 5m), restored a functional interferon 

regulatory factor (IRF) binding site from an ETS binding site (Fig. 5n) which could potentially 

promote inflammation-induced dysregulation of the locus during disease development. In our 15 

dataset, the expression of both ETS1 and IRF3 was upregulated in capillary endothelial cells in 

IHD and IHF (Fig. 5o). ETS1 is an essential factor for vascular angiogenesis (72), whereas cardiac 

damage-induced IRF3-IFN activation has been linked to expression of inflammatory cytokines 

and chemokines, inflammatory cell infiltration of the heart, and fatal response to myocardial 

infarction (73).  Although the rare variant is unlikely to explain general disease-linked signal 20 

arising from the JCAD/SVIL locus, it suggests that when present, rare variants, such as 

rs148641196 that are inherited with common GWAS SNPs, may significantly increase 

individual’s risk for a disease. 
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Taken together, these data illustrate how a disease-associated variant can affect expression of more 

than one gene in several cell types, partaking in distinct functions in each through functional gene 

expression modules. They also show, how less characterized genes can be linked to functions 

based on their co-expression patterns, which may help to identify novel disease-associated 

connections beyond previously established pathways. 5 

Discussion 

Chronic cardiovascular diseases cause electrical and structural remodeling of the atrial 

myocardium, predisposing to sinus node dysfunction and arrhythmias. Here, we provide the first 

transcriptional and spatial dissection of the ex vivo biopsies of the human right atrium in three 

conditions (IHD, IHF, and NIHF), highlighting evidence of microvascular dysfunction and pro-10 

inflammatory changes in the earlier stages, and subsequent chronic inflammation and hypertrophic 

signaling in the advanced stages of the disease. 

In the healthy human heart, the main source of energy is fatty acids, followed by glucose, and 

lactate, and to a lesser extent ketone bodies and amino acids (74). One of the hallmarks of disease 

progression is the switch from fatty acids to glucose, and accompanied suppression of 15 

mitochondrial oxidative phosphorylation, together with a gradual decrease in mitochondrial 

biogenesis, and overall downregulation of oxidative metabolism (74). As a result, the failing heart 

reverts to “fetal phase”, where glycolysis is increased, as fatty acid and glucose oxidation are 

suppressed. However, it remains unresolved whether these metabolic changes cause disease 

progression or result from it. In this study, we documented the metabolic switch in the earlier stage 20 

of the disease prior to major hypertrophic and inflammatory changes of the tissue, across various 

right atrial cell types from cardiomyocytes to vascular and immune cells. Although metabolic 

reprogramming would be expected in the hypertrophic tissue of the ventricles, it is more surprising 
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to find it in the right atrial appendage for its remote location, as it suggests major changes in the 

tissue function far away from the atherosclerotic plaque that presumably causes the ischemic 

disease. Furthermore, metabolic reprogramming is present in the atrial tissue both in the IHF and 

NIHF, suggesting underlying mechanistic similarities between the conditions. 

As the main causal changes for the disorders studied here are expected to manifest elsewhere, 5 

further dissection of the data suggested the pro-inflammatory molecule, IL-1b, as the initiator of 

the metabolic reprogramming and subsequent inflammation in the remote location profiled in this 

study. IL-1b is highly produced and systemically released by activated macrophages, fibroblasts, 

smooth muscle cells, and endothelial cells in response to danger signals that activate 

proinflammatory processes, whereas IL-1a is a pro-cytokine that is not processed nor released 10 

outside the cell, unless the cell is injured, which makes it a marker of cell damage (75). In this 

study, higher levels of IL-1a in serum samples of the patients with HF compared to the control 

samples may have been an indicator of vascular inflammation (41), as the gene expression patterns 

of the cardiomyocytes, mesothelial cells, vascular cells, and various immune cells suggested 

coronary microvascular dysfunction with an inflammatory component as one of the causal 15 

mediators of disease-associated changes in the tissue. Coronary microvascular dysfunction impairs 

the endothelial lining of the blood vessels that oxygenate and nourish the heart muscle. It manifests 

as structural and functional abnormalities of the microvasculature and its presence associates with 

the worst clinical outcomes, especially in myocardial ischemia (17). The role this cellular state in 

the right atrial tissue plays in the disease progression and manifestation of atrial fibrillation and 20 

HF warrants further investigation. Although IL-1b was identified as an underlying factor 

promoting the pathological changes more widely, it should be noted that the main regulator may 
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also be one of the factors downstream of IL-1b activity, such as IL-6, which has been suggested 

to play a causal role in IHD (76). 

Inflammation has long been known to play a detrimental role in the atherosclerotic plaques in IHD 

(77) and to correlate with increased risk for cardiovascular events (78,79), which has prompted the 

question if inflammation should be targeted in the cardiovascular disease treatment more broadly. 5 

As the data presented here suggests an active role for the interleukins in initiation of severe 

cardiovascular remodeling far from the acute site, targeting low residual inflammation in 

cardiovascular disease using widely available drugs seems reasonable. Although measurement of 

IL-1b in the clinic is not feasible, C-reactive protein (CRP) is a correlate for IL-1 and IL-6 activity 

(80-82) that is available in every laboratory. As drugs targeting IL-1b and IL-6 are available for 10 

use in cardiovascular disease treatment (42,83-87), further investigation of these interleukins in 

the disease manifestation and progression in adult human tissue and human disease models is 

critical.  

In conclusion, the integrated information from cell and cell subtype-specific gene expression 

changes across various cardiovascular traits can be used to better understand the complex 15 

molecular disease mechanisms behind the traits, and to identify critical drivers of cardiovascular 

disease, as well as to guide the development of novel therapeutic strategies for cardiovascular 

disease treatment. The data collected in this study suggests that investigation of human 

cardiovascular disease should expand beyond atherosclerotic plaques and left ventricle to gain 

insight into the pathological remodeling occurring in distant, yet functionally important parts of 20 

the heart that may play a role in sustenance and progression of the disease. 
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Fig. 1. Expression map of the ex vivo tissue from the right atrium. a. Overview of the 

samples and experimental approach. Image was created using BioRender. b. UMAP embedding 

of the snRNA-seq data distinguishing populations of 12 main cell types. c. Spatial 

transcriptomics image (Resolve Biosciences) of the cardiac tissue, depicting main cell types in 

different colors as marked by the expression of their marker genes. d. UMAP embedding of the 5 

snRNA-seq data highlighting the expression of the marker genes for endocardial endothelial cells 

(LEPR, NPR3, and PCDH15), vascular endothelial cells (GRB10, PREX2, and VWF), epicardial 

mesothelial cells (SLC4A4, EZR, and PRG4), and pericytes (DACH1, ABCC9, and SEMA5A). e. 

Violin plot of the marker genes from (d) and other main cell types from (b) (Cardiomyocyte 

(CM), endothelial cell (EC), endocardial EC (EEC), vascular EC (VEC), fibroblast (FB), 10 

epicardial mesothelial cell (MESO), macrophage (MP), lymphocyte (L), pericyte (PER), smooth 

muscle cell (SMC), Schwann cell (SC), Neuron (N), adipocyte (AD)). f. Spatial expression 

(Visium, 10x Genomics) of the marker genes for endocardial endothelial cells (LEPR, NPR3, and 

PCDH15), vascular endothelial cells (GRB10, PREX2, and VWF), epicardial mesothelial cells 

(SLC4A4, EZR, and PRG4), and pericytes (DACH1, ABCC9, and SEMA5A) in two patient 15 

samples. g. Spatial expression (Resolve Biosciences) of the cardiomyocyte (CHRM2), 

endocardial endothelial cell (PCDH7), fibroblast (ABCA6), mesothelial cell (PRG4), and 

Schwann cell (MPZ) marker genes in the right atrial tissue. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2022. ; https://doi.org/10.1101/2021.06.23.449672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449672
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.7k

2.8k

3.0k

6.5k

3.6k

3.2k

6.3k

386

142

4.5k

3.3k

CA ART ACAP CAP TIP VCAP VEN INF DIV PER SMC

0 0.5
Median expression

in group

D
K

K
2

G
JA

5
E

FN
A

5
P

C
S

K
5

FU
T8

E
FN

B
2

V
E

G
FC

P
IK

3R
3

B
TN

L9
C

C
D

C
85

A
A

B
LI

M
3

P
K

D
1L

1
A

R
H

G
A

P
18

FM
N

L2
TM

E
M

16
3

S
LC

O
2A

1
P

LV
A

P
N

R
P

2
G

P
M

6A
P

K
H

D
1L

1
P

O
S

TN
C

X
3C

L1
IC

A
M

1
W

A
R

S
D

IA
P

H
3

E
ZH

2
H

P
1B

P
3

R
G

S
5

P
D

E
1C

A
B

C
C

9
M

Y
H

11
R

G
S

6
D

G
K

G

CA
ART

ACAP
CAP
TIP

VCAP
VEN
INF
DIV
PER
SMC

Cell
number

Marker
genes

Coronary artery EC (CA)

0

1
Artery EC (ART)

0

1
Arterial capillary EC (ACAP)

0

1

capillary EC (CAP)

0

1
Tip cells EC (TIP)

0

1
Venous capillary EC (VCAP)

0

1

Venous EC (VEN)

0

1
Pericytes (PER)

0

1
Smooth muscle cells (SMC)

0

1

DKK2
GJA5 EFNA5

PCSK5
FUT8 EFNB2

VEGFC
PIK3R3 BTNL9

CCDC85A
ABLIM3PKD1L1

ARHGAP18
FMNL2

TMEM163
SLCO2A1

PLVAP NRP2

GPM6A
PKHD1L1
POSTN

RGS5
PDE1C ABCC9

MYH11
RGS6 DGKG

10 20 30 40
Fraction of cells

in group (%)0.0 0.5

Mean KLF2 
expression relative
to the phenotype

Control

A
C

A
P

A
R

T
C

A
C

A
P

D
IV IN
F

P
E

R
S

M
C

TI
P

V
C

A
P

V
E

N

Ischemic Heart Disease
Ischemic Heart Failure

Non-Ischemic Heart Failure

KLF2

a b

c d

e

f g

MYH11

MRVI1

PDGFRB

RGS5

LINC01091

DKK2

CDH5

PCSK5

VEGFC

SMC

SMC + PER

PER

CA

Arterial

Vascular subtype marker genes expression

Vein Artery

CDH5

NRP2

LINC02147

PKHD1L1

GPM6A

CDH5

PCSK5

VEGFC

DKK2

TACR1

VEC

Venous (specific)

Venous 
(non specific)

VEC

Arterial (CA + ART)

CA

Lumen

Intima IntimaLumen

MYH11

CDH5

PCSK5

VEGFC

DKK2

TACR1

SMC

VEC

Arterial (CA + ART)

CA

Coronary
arteries
(CA) 

Arterioles
(ART)

CDH5

MYH11

DKK2

PCSK5

VEGFC

BTNL9

CCDC85A

PKHD1L1

GPM6A

CA4

SLC9C1

SMC

VEC

CA

Arterial

ACAP

VEN

CAP

Venous capillaries

Arterial capillariesCapillaries

Media

Intima
Lumen

PER/SMC

VEC

ART

CA

ACAP

CAP

VEN

EEC

KLF2

MYH11 MRVI1 RGS5
PDGFRB LINC01091

CDH5 CYYR1 VWF

PCSK5 VEGFC
ENPP2

DKK2 TACR1

BTNL9 CCDC85A

CA4 SLC9C1

GPM6A LINC02147 
PKHD1L1

PCDH7
PCDH15

Vein

Artery

h

i

Capillary subtypes

Coronary artery (Resolve Molecular Cartography)

Arterioles and arteries

Summary of vascular cell type 
marker gene and KLF2 expression

Coronary artery

Arteriole
Arterial 
capillary

Capillary
Tip cells

Venous capillary

Venous

Inflammatory

Dividing

Pericytes

Endothelial cells

Smooth muscle
cells

Heart tissue

Selecting vascular cells UMAP1

U
M

A
P

2 Vascular 
subtypes

VEC
SMC

PER

Sketch of the Artery

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2022. ; https://doi.org/10.1101/2021.06.23.449672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

38 
 

Fig. 2. High-definition map of the right atrial microvasculature. a. UMAP embedding of the 

snRNA-seq data for vascular cell subtypes, separating distinct endothelial, smooth muscle cell, 

and pericyte populations. Heart image from BioRender. b. Marker genes for vascular subtypes 

(coronary artery (CA), arteriole (ART), arterial capillary (ACAP), capillary (CAP), tip cells (TIP), 

venous capillary (VCAP), venous (VEN), inflammatory ECs (INF), dividing ECs (DIV), pericytes 5 

(PER), and smooth muscle cells (SMC)). c. UMAP embeddings showing vascular marker gene 

expression for coronary arteries (DKK2, GJA5, and EFNA5), arterioles (PCSK5, FUT8, and 

EFNB2), arterial capillaries (VEGFC, PIK3R3, and BTNL9), capillaries (CCDC85A, ABLIM3, and 

PKD1L1), tip cells (ARHGAP18, FMNL2, and TMEM163), venous capillaries (SLCO2A1, PLVAP, 

and NRP2), venous ECs (GPM6A, PKHD1L1, and POSTN), pericytes (RGS5, PDE1C, and 10 

ABCC9), and smooth muscle cells (MYH11, RGS6, and DGKG). d- g. Spatial images (Resolve 

Biosciences) of coronary arteries and arterioles (d-e), venous and arterial capillaries (f), and a vein 

and an artery (g) in right atrial tissue. Cross-section of an artery from BioRender. h. Summary 

image (Resolve Biosciences) of different vessels and KLF2 expression in them.  i. KLF2 

expression in snRNA-seq data across disease groups in vascular cell subtypes. 15 
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Fig. 3. Cardiovascular disease drives inflammatory microvascular dysfunction in the right 

atrium. a. Top 10 canonical pathways with the highest significance score (B-H adjusted p-value 

p<0.05 for all) by IPA’s comparison analysis across the main cell types in IHD (N=11), IHF 

(N=11), and NIHF (N=3) against control (N=6). Full table can be found at website. b. Sirtuin 

signaling pathway from IPA for cardiomyocytes in NIHF against control as a representative for all 5 

three groups. Blue indicates inhibition of the molecule, orange/red activation. Purple highlight 

marks significantly differentially expressed molecules in the dataset. c. Spatial expression 

(Visium) of TRBC, CCL5, CD36, PPARA, and PPARG in a control and heart failure sample. 

Quantitation of the signal across control (n=4) and heart failure (n=4) sections is shown. Whiskers 

show the maximum and minimum values, except for outliers (more than 1.5 times the 10 

interquartile). d. Scaled (0-1) mean of serum cytokines in patients with heart failure (N=6) and 

their controls (N=7). No statistical significance. e. Quantitation of CD68+ tissue macrophages in 

pericardium of patients with heart failure (N=10) and their control group (N=10) (*p<0.0104). A 

representative immunohistostaining image provided for both groups, showing macrophages in 

brown. f. Top 10 canonical pathways with the highest significance score (Fisher’s Exact Test, 15 

p<0.05 for all) across vascular cells within each group: IHD, IHF, and NIHF. Top 10 pathways for 

each condition were selected and p-value is presented across all conditions. g. Top shared 

cytokines in IPA’s Upstream Regulator analysis between IHD, IHF, NIHF, and disturbed flow in 

HUVECs dataset (N=3 for d-flow and for control). IL-1b network from 2h time point by IPA’s 

machine learning based graphical summary is a representative for all four time points (2, 8, 14, 20 

32h of IL-1b treatment compared to control (N=3) in HAECs) h. Top overlapping Upstream 

Regulators (Fisher’s Exact Test p<0.05 for all) with similar activity patterns from IPA 

(microRNAs and transcriptional regulators only) for IHD, IHF, and NIHF in main cell types and 

four EC subtypes. Red is for predicted activity and blue for inhibition. i. Depiction of the 
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connections between the potential mediators of the mitochondrial and metabolic changes. j. 

Overview of IL-1b signaling. k. Effects of IL-1b on activated endothelium. j-k. were created with 

BioRender. 
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Fig. 4. Disease-associated changes in the immune cells of the right atrial tissue and the 

pericardial fluid. a. snRNA-seq for immune cell subtypes in right atrial tissue, separating 14 

populations. Heart image from BioRender. b. Marker genes for immune subtypes (dendritic cells 

(DC), macrophages (MP), lipid-associated macrophages (LAM), interferon MP (IFN-MP), 

monocytes (mono). c. Spatial expression images (Resolve Biosciences) of the cardiac tissue, 5 

depicting immune cells as marked by the expression of their marker genes near epicardial 

mesothelium and vasculature. d. Immune cell proportions in control, IHD, IHF, and NIHF 

samples. Bar charts depict the immune cell subtype proportions (%) of all cells in each sample for 

LT-CD4, infla-MP, and NKT-CD8 in control, IHD, IHF, and NIHF groups. Whiskers show the 

maximum and minimum values, except for outliers (more than 1.5 times the interquartile). e. 10 

Quantitation of the spatial expression signal (Visium) for NPPB, ACTA1, and immunoglobulins in 

control (n=4) and heart failure (n=4) tissue sections. Representative Visium images shown for 

CD163, LYVE1, and IL7R expression. Whiskers show the maximum and minimum values, except 

for outliers (more than 1.5 times the interquartile). f. LAM1 and LAM2 proportions (%) of all cells 

in each control, IHD, IHF, and NIHF sample depicted by groups. Whiskers show the maximum 15 

and minimum values, except for outliers (more than 1.5 times the interquartile). g. 

Immunofluorescence images of lipid-associated macrophages (LAM) labeled using anti-TREM2 

(red) and bodipy (green) in the epicardial side of the human right atrial appendage. Patients with 

ischemic heart failure (IHF; middle panel) had increased number of LAMs compared to patients 

with ischemic heart disease (IHD; left panel). Right panel shows zoomed region of interest from 20 

the merged image. Representative samples are shown. h. Top canonical pathways with highest 

activation Z-scores for LAMs in IHD (N=11), IHF (N=11), and NIHF (N=3) against control (N=6) 

based on IPA analysis. Predicted pathway activation is shown in red and inhibition in blue based 

on the expression changes of the pathway molecules in the dataset and current literature-based 
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knowledge curated into the QIAGEN Knowledge Base. Gray is for enriched pathways with B-H 

adjusted p-value over 0.05 and white with x for no enrichment. All pathways with activation Z-

score are statistically significant (B-H adjusted p-value < 0.05). A representative Glucocorticoid 

receptor pathway chart is shown.  i. UMAP embedding of the snRNA-seq data for immune cell 

subtypes in pericardial fluid, separating 12 immune cell populations and a mesothelial population. 5 

Heart image by BioRender. j. Marker genes for immune subtypes in the pericardial fluid. k. 

Immune cell proportions in cardiac tissue and corresponding pericardial fluid samples in control, 

stable CAD, acute MI, and remote MI. l-m. Top 10 pathways with highest significance score in 

IPA’s comparison analysis (B-H adjusted p-value < 0.05) shown across the cell types in each 

condition in cardiac tissue (l) and corresponding pericardial fluid samples (m) in stable CAD 10 

(N=5), acute MI (N=4), and remote MI (N=5) compared to control (N=4). Only the top 10 for each 

group are shown. Full data can be explored at website. 
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Fig. 5. Disease-associated genetic variation affects disease-relevant modules across cell 

types. a. Gene expression modules in IFN-MPs of the pericardial fluid. b. IFN-MP proportions 

(%) of all cells in control, IHD, IHF, and NIHF samples and tissue and pericardial fluid control, 

stable CAD, acute MI and remote MI samples depicted by group. Whiskers show the maximum 

and minimum values, except for outliers (more than 1.5 times the interquartile). c. 5 

Representative Visium images shown for CXCL10 expression. d. Spatial images (Resolve) for 

EC (EMCN, ERG, PECAM1, CDH5, VWF), VEC (DKK2, ENPP2, PCSK5, CYYR1), EEC 

(PCDH7), SMC (NTRK3, MRVII), L (BCL11B, CD247, SKAP1, THEMIS), MP (CD163, MRC1, 

F13A1, MS4A6A), inflammatory (CCL8 and EGR2), and CXCL10 gene expression. e. Gene 

expression modules for vascular cells (all subtypes combined) highlighting interferon module, its 10 

genes (GWAS-linked genes in red), and pathway enrichments. f. Enrichments of the interferon 

module across vascular cells. g. Top canonical pathways with highest activation Z-scores for 

IFN-MPs of the pericardial fluid in stable CAD (N=5), acute MI (N=4), and remote MI (N=5) 

compared to control (N=4) based on IPA analysis. Predicted pathway activation is shown in red 

based on the expression changes of the pathway molecules in the dataset and current literature 15 

knowledge curated into the QIAGEN Knowledge Base. Gray is for enriched pathways with B-H 

adjusted p-value over 0.05 and white with x for no enrichment. All pathways with activation Z-

score are statistically significant (B-H adjusted p-value < 0.05). h. Regulator networks for stable 

CAD and remote MI in IFN-MPs from IPA’s graphical summary. i-j. Gene expression module 

for SVIL in SMCs (i) and pericardial fluid cells (j). GWAS-linked genes are shown in red. k. 20 

Epimap linking of the JCAD/SVIL locus. l. Illustration of LD SNPs of the natural European 

haploblock combined with the scATAC-seq data from human coronary arteries generated using 

LDlink. m. Allele-specific enhancer activity measured with STARR-seq in teloHAECs under 

basal and inflammatory conditions (6h IL-1b) and HASMCs subjected to cholesterol loading for 
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24h. SNPs demonstrating significant changes (FDR < 0.1) in enhancer activity are shown. n. 

Transcription factor binding motifs altered by rs148641196. Position weight matrix scores shown 

for reference and alternate. o.  Changes in transcription factor (TF) ETS1 and IRF3 gene 

expression in capillary endothelial cells in IHD and IHF in snRNA-seq by Nebula.  
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