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Abstract 

Despite large experimental and computational efforts aiming to dissect the mechanisms 

underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. 

Here, we introduce a matrix factorization framework to integrate physical and functional 

interaction data of genomic segments. The framework was used to predict a regulatory network 

of chromatin interaction edges linking more than 20,000 promoters and 1.8 million enhancers 

across 127 human reference epigenomes, including edges that are present in any of the input 

datasets. Our network integrates functional evidence of correlated activity patterns from 

epigenomic data and physical evidence of chromatin interactions. An important contribution of 

this work is the representation of heterogeneous data with different qualities as networks. We 

show that the unbiased integration of independent data sources suggestive of regulatory 

interactions produces meaningful associations supported by existing functional and physical 

evidence, correlating with expected independent biological features. 
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Introduction 
The disruption of cis-regulatory elements is considered the key mechanism through which 

disease risk is conferred by noncoding mutations (1-3). However, in order to support this 

hypothesis and apply it in the development of rational therapeutic strategies, several difficulties 

have to be surpassed. First, identification of cis-regulatory elements proved a difficult task given 

the dimension of the noncoding genome (4). This has been overcome using the association of 

chromatin marks with genome activity in coding and noncoding regions as a widely accepted 

approximation to map the tissue-specific activity and dynamics of distal and proximal cis-

regulatory elements (5-7). The highly correlated structure displayed by combinatorial patterns of 

marks across the genome enables computational identification of a reduced number of robust 

chromatin states (8,9) for display in a single annotation track. Thanks to these experimental and 

computational advances, reference epigenomes were recently profiled and annotated for a large 

number of human tissues (10), including the tissue-specific annotation of active cis-regulatory 

elements (e.g., enhancers). 

Having defined systematic strategies for genome-wide mapping of cis-regulatory elements, 

efforts have more recently shifted towards tackling the more challenging problem of determining 

what genes are likely to be targeted by given cis-regulatory elements, mostly enhancers. 

Numerous solutions have been proposed on both the computational and  experimental fronts. 

On the computational side, several efforts have exploited the correlated structure of epigenomic 

features to infer associations between enhancers and target promoters. Enhancer-promoter 

associations have been mapped by quantifying patterns of coactivity of annotated enhancer 

elements and promoters across and within tissues (8,10). Supervised machine learning 

approaches with the goal of learning epigenomic patterns discriminative of functional 

interactions have also been proposed (11-13). On the experimental side, techniques to measure 

chromatin conformation enable the mapping of high confidence interactions at different levels of 

resolution and across several human cell-types and tissues (14,15), These methods can be 

targeted to elucidate regulatory interactions by  enrichment of potential enhancer-promoter 

contacts in assays like the Chromatin Interaction Analysis by Paired-End Tag Sequencing 

(ChIA-PET) or  promoter capture Hi-C, a promoter centered chromosome conformation capture 

technique (14,16). However, both approaches suffer from limitations. First, there is no gold 

standard interaction set. Second, it is currently not feasible to profile chromatin interactions in a 

large number of cells and tissues to provide a tissue-specific reference for an organism. In 

addition, the level of resolution of Hi-C experiments makes it far from trivial to precisely 

localize the particular enhancer and promoter pairs that might be involved in functional 

transcriptional regulatory interactions. Given these and associated limitations, and the 

availability of recently published human reference epigenomes (127 cell/tissue types) (10) and 

the largest sets of mapped chromatin interactions across human tissues (17 primary blood cell 

types and 21 cell/tissue types) (14,15), we reasoned that a hybrid and integrative computational 

approach is timely. 

This article presents SWIPE-NMF, a computational method that implements Sliding WIndow 

PEnalized Nonnegative Three-factor Matrix Factorization on heterogeneous association data 

represented as networks. This approach was used to integrate the functional and physical 
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evidence of regulatory interactions provided by computational coactivity inference and 

experimental data, respectively. This method was applied to annotate a weighted set of potential 

interactions for each of the 127 cell and tissue types within human reference epigenomes (10). 

Furthermore, SWIPE-NMF was implemented as a flexible tool that can be applied to integrate 

any set of enhancer annotations with prior evidence sources for regulatory interactions to infer 

tissue-specific weighted interactions. 
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Results 

A matrix dimensionality reduction framework integrating evidence of 

enhancer-promoter interactions.  
In order to computationally integrate the large set of qualitatively different data suggestive of 

potential enhancer-promoter interactions in a principled way, we first curated a database 

including five experimental data sources (Figure 1). We considered previously published (1) 

enhancer-promoter coactivity associations(8,10), (2) physical chromatin interaction calls from 

Hi-C data in 21 tissues (15,17), (3) cis-regulatory-gene associations defined by eQTL in 53 

human tissues (18), (4) cis-regulatory-promoter associations defined by activity correlation 

between DNase-I hypersensitivity sites (DHS) and promoters (19), and (5) topologically 

associated domain (TAD) annotations defined from Hi-C data (20). A description of each data 

type and the nature of evidence provided is included in the Supplementary material (S Table 1). 

As an example, Figure 1A shows the density of data in a randomly selected region in K562 cells.  

For consistency, we defined a reference set of potential enhancer elements to which all data were 

mapped. The reference selected was the non-genic enhancer ChromHMM chromatin state (7-

Enh) annotated for all 127 reference human epigenomes in the roadmap epigenomics project 

(10). The heterogeneous nature of the data, i.e., association data at different length scales, in 

addition to annotations of discrete genomic regions (e.g., TAD domains), made the integration 

task challenging. We approached the problem by first devising an individual network 

representation for each data source representable in matrix form and compatible for mapping 

across sources (Figure 1B, C). We then applied an extended NMF algorithm to fuse the 

independent network data.  

Specifically, we considered six types of genomic segments: enhancer, promoter, Hi-C anchor, 

cis-eQTL (i.e., the SNP position having the association), DHS, and TAD. Each network is 

composed of the total genomic segments in the data. We can define two qualitatively different 

types of associations (Figure 1C): interaction and incidence associations. Interaction matrices 

(blue) code associations between genomic segments of different types that are supported by 

either physical or functional experimental data. Incidence matrices represent the incidence of one 

element within the other (orange) i.e, one genomic segment overlapping with the other. Finally, 

we define two diagonal incidence matrices  (red), which operationalize the prior knowledge 

that regulatory interactions are expected to be supported by Hi-C physical interactions and 

preferentially occur within TAD domains. We defined a consistent set of matrices for each 

cell/tissue type (for details, see Materials and Methods). Thus, we solved the problem of 

heterogeneous data representation by operationally defining networks of experimentally 

supported association as binary matrices 𝑅𝑖𝑗 that code associations between genomic segments of 

type  and . Importantly, integrating the data into this format enables the application of well-

established matrix factorization algorithms. The matrices  and  are the inputs of the matrix 

factorization algorithm. 
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Figure 1. Schematic representation of the SWIPE-NMF framework. Heterogeneous association 

data coded as binary networks were integrated, and scored sets of tissue-specific enhancer-promoter, enhancer-

enhancer, and promoter-promoter interactions inferred for 127 human reference epigenomes in an unsupervised 

manner. A) Different genetic interactions in a randomly selected region on chromosome 22. Enhancer-promoter 

activity correlations (EP), are shown in blue. Hi-C links are in red. Links between SNPs and promoters detected by 

eQTL are in green. Correlation between DNaseI hypersensitivity sites and promoters across multiple cell types are 

in sky blue. Topologically associated domains are not shown to avoid confusion with links among genomic 

elements. Locations of genes, reference enhancers and histone marks were also included. B) All data types were 

organised into a matrix/networks. Each row or column represents a type of genomic segments such as enhancers, 

promoters or Hi-C anchors.  C) SWIPE-NMF was used to integrate all five data types to produce cell/tissue type 

specific enhancer-promoter, enhancer-enhancer and promoter-promoter links for each of the 127 cell/tissue types.  

Each matrix 𝑅𝑖𝑗 was decomposed into three matrices 𝐺𝑖, 𝑆𝑖𝑗  and  𝐺𝑗
𝑇 such that 𝑅𝑖𝑗 ≈ 𝐺𝑖𝑆𝑖𝑗𝐺𝑗

𝑇. 𝑅𝑖𝑗 is the relation 

between data type i and j. 𝑅12 is enhancer promoter interaction. 𝐺𝑖 is an 𝑛 × 𝑚 matrix where n is the number of 

elements in that data type (e.g., number of enhancers) and m is the number of ranks. 𝑆𝑖𝑗 is a matrix representing the 

relation between columns in 𝐺𝑖 and 𝐺𝑗.  Joint factorization of matrices allows integration of information from all 

data types while minimizing information loss. This factorization was conducted on 5 Mb overlapped windows on 

each chromosome in each cell and tissue type. 

 

Three-factor penalized matrix factorization (PMF) 
Our method extends the traditional three-factor penalized matrix factorization (PMF) approach, 

which has been recently used for gene functions and pharmacologic actions predictions with an 

additional constraint imposing genomic locality of regulatory interactions (21-23). This method 

is designed to fuse the heterogeneous network datasets and infer a scored set of enhancer-

promoter, enhancer-enhancer, and promoter-promoter interactions (Figure 1C).  

Our method seeks to decompose the observed interaction matrix into a lower-dimensional 

representation that reveals biologically-meaningful components. All the association matrices 

𝑅𝑖𝑗 are simultaneously factorized: each individual matrix  is decomposed into 𝐺𝑖, 𝐺𝑗  and 𝑆𝑖𝑗 so 

that 𝑅𝑖𝑗 ≈ 𝐺𝑖𝑆𝑖𝑗𝐺𝑖𝑗
𝑇  . In other words, an entry 𝑅𝑖𝑗(𝑝, 𝑞) is approximated by the inner product of 

the 𝑝-th row of matrix 𝐺𝑖 and a linear combination of the columns of 𝑆𝑖𝑗 , weighted by the 𝑞-th 

column of matrix 𝐺𝑗. The objective function to minimize is: 

𝑚𝑖𝑛𝐺≥0 𝑓(𝐺, 𝑆) = ∑  ||𝑅𝑖𝑗 − 𝐺𝑖𝑆𝑖𝑗𝐺𝑗||2  + ∑  𝑡𝑟𝑎𝑐𝑒(𝐺𝑇𝛳𝑡𝐺). 

From a biological perspective,  a matrix 𝑅𝑖𝑗 defines the association between two different 

genomic segment types 𝑖 and 𝑗, such as enhancers and promoters. A matrix 𝐺 is specific to a type 

of genomic segments and records associations among genomic segments of that type. 

● Each row of 𝐺𝑖 is a genomic segment of type 𝑖 (e.g., an enhancer).  
● The columns of 𝐺𝑖  can be understood as clusters dividing genomic segments of type 𝑖 

based on shared patterns of regulatory or physical interactions.  
● The matrix 𝐺𝑖 specifies the probability of each genomic segment of type 𝑖 belonging to 

each cluster.  
● The matrix 𝑆𝑖𝑗 can be interpreted as defining association among clusters of genomic 
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segment type 𝑖 and type 𝑗.  
Using a sliding window of size 5Mb, the matrix factorization algorithm focuses on uncovering 

local patterns within the windowed genomic region (see Materials and Methods for details). 

Association among genomic segments of the same type , such as enhancer-enhancer interactions, 

can be estimated from 𝐺𝑖matrices by 𝐺𝑖𝐺𝑗
𝑇. In this way, 𝑅𝑖𝑗 is dissected into, and can be 

reconstructed from, three matrices,𝐺𝑖 ,𝐺𝑗 and 𝑆𝑖𝑗 in a systematic, tractable and interpretable way.  

The algorithm iteratively updates G and S by fixing one of them in an alternate way. We applied 

this method to all the integrative tissue-specific sets of matrices, including Hi-C, enhancer-

promoter activity correlation, DHS-promoter correlation, eQTL, and TAD domains; obtaining a 

tissue-specific weighted set of interaction matrices for enhancer-promoter (reconstructed 𝑅12),  

enhancer-enhancer(𝐺1𝐺1
𝑇), and promoter-promoter(𝐺2𝐺2

𝑇) interactions. 
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Figure 2. Performance of SWIPE-NMF in enhancer-promoter interaction inference. A)  receiver 

operating characteristic (ROC) curve was used to demonstrate the power of SWIPE-NMF  method to 

reconstruct enhancer-promoter network inferred by activity correlation alone (five-fold cross validation). 

20% of the enhancer-promoter activity correlation links were left out in each fold. An area under ROC 

curve (AUROC) > 0.8 was reported (AUORC≈0.5 for random predictions). B) Performance of SWIPE-

NMF by leaving each of the  entire datasets out in inputs. Using eQTL-promoter links (red), and DNaseI 

hypersensitivity site to promoter correlation links (green) as ground truth, AUROC were both > 0.70. C) 

Confidence scores of interactions within topologically associating domains (TAD) are significantly higher 

than inter-TAD interactions with a P value <10−5
.  D) Most of the high score interactions are within TAD 

domains. Each block on x axis is a TAD. Chromosome 22 of the K562 cell line is shown. Yellow color 

indicates high interaction scores and blue color indicates lower scores. E) Performance of SWIPE-NMF 

using ChiA-PET as gold standard (24). SWIPE-NMF (black, AUROC>0.7) performs better than activity 

based correlation (red, AUROC≈ 0.6), average matrix (green, AUROC≈ 0.6), and nearest promoter 

(brown).  F) 50-80% of the enhancer-promoter links were unique to output of SWIPE-NMF, i.e., not seen 

in any of the five input data types. The confidence scores of links unique to SWIPE-NMF were generally 

in middle to lower range. G) Enhancer-promoter links unique to SWIPE-NMF output had an AUROC≈
0.6 when ChiA-PET was used as ground truth.  

 

Evaluation of the data integration strategy 
There is currently no large gold-standard compendium of known regulatory region interactions, 

and lines of evidence for physical, functional, and genetic interactions each capture different 

aspects of the underlying regulatory network. However, these complementary biological datasets 

enabled us to validate our predictions using a diversity of methods and evidence. (1) For 

enhancer-promoter co-activity associations, we used five-fold cross validation; (2) for each 

independent empirical data set suggestive of regulatory associations, we excluded one whole 

dataset from inputs; and (3) with orthogonal experimental data, we used separate ChiA-PET 

data. Finally, (4) we examined biological correlates and cell/tissue-type specificity of the scored 

sets of interactions inferred by SWIPE-NMF. 

In five-fold cross validation, SWIPE-NMF was used to reconstruct the functional coactivity data 

of enhancer-promoter associations (8), with 20% of the associations excluded from inputs. 

SWIPE-NMF showed good performance on this task (AUC = 0.82) (Fig. 2A). Next, in four 

evaluation experiments, each evidence source (HiC, eQTL, TAD and DHS) was left out and used 

to test the model’s consistency with the interactions inferred by integrating the rest of the 

datasets. When each eQTL and DHS was individually excluded from inputs and used as ground 

truth, the inference also performed well (AUROC > 0.7, Fig 2B), indicating that the interactions 

predicted by integration are supported by eQTL and DHS correlation (19). In addition, when 

TAD incidence annotation is excluded from inputs, the corresponding inferred interactions 

occurring within TAD domains have much higher scores compared with those involving cross-

domain interactions (p-values <10−10) (Figure 2C). Finally, most of the interactions with high 

confidence scores are within TAD domains (15)(Figure 2D). When testing using orthogonal 

ChiA-PET data (from the K562 cell line) (24), the performance of SWIPE-NMF (AUROC > 

0.70) is better compared with either enhancer promoter activity correlation (AUROC≈0.6), 

averaging links across data types (AUROC≈0.6), and a simple nearest promoter assignment (the 

brown point in Figure 2E). The AUROC is different from previous publications because 

enhancers are defined in different way, we only focus on enhancers in non-genic regions in this 
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project and input data were handled in a more conservative way (see Materials and Methods for 

details). Interestingly, we found that a considerable portion (50% to 80% depending on cell and 

tissue type) of enhancer-promoter interactions inferred by SWIPE-NMF with low scores do not 

occur in any of the input datasets (Figure 2F). When comparing with ChiA-PET links, we found 

that these interactions uniquely predicted by SWIPE-NMF show better performance than random 

expectation (AUROC≈0.6). This suggests factorization is able to transfer information by 

learning association patterns in observed enhancer-promoter interactions. The results are 

consistent with orthogonal data of chromatin interactions mediated by RNA polymerase (24). 

Presumably the degree of overlap will increase when matching tissue-specific ChiA-PET data 

are considered, once available. Overall, the evaluation experiments demonstrate that, through 

integration by SWIPE-NMF, different sources of evidence provide complementary information 

with predictive power. 

 

Predicted enhancer-promoter interactions are biologically meaningful.  
Several studies have shown a strong correlation between chromatin interactions and gene co-

expression, due to the spatial colocalization of transcribed genes and their regulatory elements 

(25,26). We tested whether the inferred associations present a similar behavior. Using a large set 

of tissue-specific gene coexpression networks (27), we found that coexpressed gene pairs tend to 

share common interacting enhancers (P-val < 1e-30, hypergeometric test), agreeing with the 

expected behavior  (Figure 3A). We also found enrichment of transcription factor binding sites 

(TFBSs) within enhancers and promoters, and moreover, we show that inferred interacting 

enhancer-promoter pairs sharing TF binding motifs are more likely to interact (Figure 3B) than 

those without co-occurring motifs.  These results are consistent with previous reports suggesting 

that transcription factors might facilitate enhancer-promoter interactions (27,28). Previous 

studies have also shown that CTCF, an insulator binding protein that is thought to be involved in 

the regulation of chromatin structure and DNA looping (29), is enriched near interacting 

promoters and enhancers (11,13). We found enhancers interacting with promoters and promoters 

interacting with enhancers are both highly enriched in CTCF Chip-seq peaks with significant p-

values (Figure 3 C and D), within the inferred associations. 
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Figure 3. Biological correlates of inferred enhancer-promoter networks produced. No enhancer-enhancer 

and promoter-promoter links are considered in this figure. A) Co-expressing gene pairs are more likely to share 

interacting enhancers compared with gene pairs not showing co-expression (P-val < 10−15) (27). Data for K562 cell 

was shown.  B) Enhancer-promoter pairs sharing more TF binding motifs are more likely to interact(p value<10−5).  

C) Promoters interacting with enhancers show enrichment in CTCF binding sites detected by Chip-Seq which agrees 

with previous findings (13) D) Enhancers interacting with promoters also show enrichment in CTCF binding sites 

detected by Chip-Seq. E) Genes regulated by enhancers show enrichment in expression levels compared with genes 

not interacting with enhancers. F) Numbers of interacting enhancers of genes have a positive correlation with 

expression levels. G) Number of enhancers interacting with each promoter also positively correlates with cell/tissue 

type expression specificity measured by entropy rank (11). 
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Tissue-specific promoters show more enhancer interactions.  
Enhancers are known to regulate tissue-specificity predominantly by modulating the expression 

of different target genes across tissues (30). We tested whether genes being targeted by 

enhancers show distinctive properties of gene expression relative to other genes using the 

inferred interactions.  We found that genes interacting with enhancers show higher expression 

(RPKM) than those without enhancer regulation (Figure 4.3E). In addition, the level of gene 

expression in each cell type shows a positive correlation with the number of incoming enhancer 

interactions to the promoters, consistent with an additive effect of  the regulatory input (Figure 

3F). Furthermore, given the role of enhancers in establishing tissue-specificity, we hypothesized 

that genes with tissue-specific functionality are more prone to targeting by enhancers.  To test 

this hypothesis, we used an entropy based measure of gene expression specificity for each gene 

across the reference human transcriptome of the Roadmap epigenomics project (10,11), and 

found that gene expression specificity does correlate with the number of incoming enhancer 

interactions of a promoter (Fig. 3G). This result is consistent with the expectation that enhancer-

promoter interactions contribute to the cell/tissue type specific expression of genes and agrees 

with findings in previous publications (11).  

In order to further test whether genes targeted by more enhancers tend to be associated with 

tissue-specific (related) functions, we performed gene ontology (GO) term enrichment tests using 

the genes with the top 5% of incoming enhancer interactions as gene query set. In Table 5.1, we 

show examples of the enriched terms found for randomly chosen cell and tissue types. By 

looking at the top 3 GO terms in biological processes for each cell and tissue types, we found 

that highly targeted genes were generally enriched in functions related to the underlying biology 

of the tissue. This further supports our hypothesis that the inferred enhancer-promoter 

interactions contribute to the regulation of tissue-specificity. 

       Table 5.1 Gene ontology term enrichment
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SWIPE-NMF enhancer-promoter, enhancer-enhancer, and promoter-

promoter interactions.  
In addition to enhancer-promoter interactions, chromatin interactions involving only promoters 

or only enhancers have been shown to spatially organize the transcriptional machinery (24,31). 

Although the mapping and characterization of enhancer-promoter interactions has received much 

more attention, chromatin interactions occurring at similar resolution but involving only 

promoters or enhancers might be relevant under normal and abnormally disrupted conditions. 

One advantage of using SWIPE-NMF for data integration is that all three types of chromatin 

interactions are simultaneously learned during the matrix factorization  process (see details in 

Materials and Methods). When using ChiA-PET as gold standard, both enhancer-enhancer and 

promoter-promoter networks show considerable AUROC scores (>0.6) (Fig. 4A, B). Similar to 

enhancer-promoter interactions, promoters interacting with each other tend to preferentially 

show co-expression (Fig. 4C), consistent with the existence of chromatin mediated transcription 

factories within the cell(32). Interacting enhancer-enhancer pairs and promoter-promoter pairs 

sharing more TF motifs have higher chances of interaction (Figure 4D and 4E), and interacting 

enhancers and promoters are enriched in CTCF ChIP-Seq peaks (Figure 4F and 4G). Overall, the 

observed consistency of biological correlates across the different types of inferred interactions 

indicates, by integrating physical and coactivity evidence of association, SWIPE-NMF is able to 

infer general chromatin interactions, with enhancer-promoter associations as an important subset. 
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Figure 4 Biological properties of enhancer-enhancer and promoter-promoter interactions are similar to 

enhancer-promoter links. A,B) ROC curve of enhancer-enhancer and promoter-promoter interactions predicted by 

SWIPE-NMFusing ChiA-PET as gold standard both >0.6. Results of K562 are shown. C) Promoters of co-

expressing genes are more likely to interact with each other. D,E) Enhancer-enhancer pairs and promoter-promoter 

pairs sharing more TF bind motifs are more likely to interact. F,G) Enhancers involved in enhancer-enhancer and 

promoters involved in promoter-promoter interactions are enriched in CTCF binding sites detected by Chip-Seq. 
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Discussion: construct enhancer promoter networks using an 

intermediate integration strategy  
 

After mapping cis-regulatory elements to their target genes, testable mechanistic hypotheses can 

be proposed for detrimental effects conferred by non-coding pathogenic mutations. With the goal 

of accelerating such mapping genome-wide, and to provide a starting reference set of potential 

chromatin mediated regulatory interactions across reference human tissues, here we introduced 

and applied SWIPE-NMF.  

Several features distinguish the proposed computational framework from other tools concerned 

with particular instances of the same problem. When dealing with data integration, most existing 

methods either transform all data sources into a single feature-based table and apply to it well-

established feature-based machine learning algorithms (early integration), or build an 

independent  model for each data source (late integration). SWIPE-NMF, instead, is based on a 

more recent, intermediate integration strategy that explicitly addresses the multiplicity of data 

types by fusing them through inference of a single joint model (33,34). Importantly, such an 

intermediate level of integration retains the structure of the data sources, incorporating them 

within the structure of the learned model. SWIPE-NMF was specifically designed to exploit the 

information provided by both computational coactivity-based inferences and experimentally 

grounded physical evidence of chromatin interactions, overcoming their individual limitations. 

An important contribution of this method is the representation of  heterogeneous data with 

multiple resolutions as networks, enabling their integration without resolution conversion. 

SWIPE-NMF implements an unbiased, unsupervised approach that directly factorizes all the 

integrated data matrices using non-negativity constraints (35). The simultaneous factorization of 

matrices allows sharing of information by revealing the latent structure of all input network data. 

Finally, SWIPE-NMF is applied using overlapped sliding windows along chromosomes, 

facilitating the capture of both local and global patterns from the data, while at the same time 

improving efficiency. Although, in this project, five experimental datasets were selected to 

provide reliable resources of interactions among promoter and enhancers, the proposed 

framework is flexible and can easily take into account other datasets of interest. Moreover, the 

method can be applied to other purposes such as improving predictions of eQTLs and chromatin 

physical interactions.  

This new matrix factorization based approach integrates independent data sources suggestive of 

regulatory interactions. Application to a large set of reference human tissues produces 

meaningful associations supported by existing functional and physical evidence, and which 

correlate with expected, independent biological features. The integrative emphasis underlying the 

design of our approach limits its predictive reach, as the quality and quantity of inferred 

interactions depends on the status of the available data. However, we consider this as a strength 

of our approach on inferred sets of tissue-specific interactions. Data are being produced and 

curated at an accelerated pace. By integrating new data, SWIPE-NMF will enable inference of 

novel associations and improvement of the current analysis. Unbiased and integrative 

computational tools are required to fully exploit the power of the multiple flavors of next-

generation sequencing data and epigenomic information. 
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Materials and Methods  

Datasets and data processing 
High resolution HiC interactions were obtained for a total of 21 human cell lines and primary 

tissues (15,17); in both cases, the significant interactions reported by the authors were used. 

Cell/tissue types were matched to the corresponding reference epigenome identifiers (EID) from 

the Roadmap epigenomics project, or matched to the closest EID according to information from 

the authors. Only interactions with q-value <1e-3 were considered. Tissue-specific coactivity 

based enhancer-promoter associations inferred as described in Ernst et al. 2011 were obtained 

from the Roadmap Epigenomics Consortium 2015(10). eQTL data (V6p) was obtained from the 

GTEX consortium, considering only associations with a p-value < 1e-5. TAD annotations were 

obtained from Dixon et al. 2012(20). DHS data was obtained from Thurman et al. 2012(19), 

considering only associations with a score > 0.9. Transcription factor binding motifs were 

obtained from Marbach et al. 2016(36). ChIA-PET data were obtained from Li et al. 2012(24). 

The tissue-specific enhancer annotations used as reference were extracted from the Roadmap 

epigenomics project, using the non-genic chromatin state (7_Enh) annotated with the core 

ChromHMM 15-state model. CTCF binding peaks were downloaded from ENCODE website; 

Broad and Narrow peaks were combined (4).  

Three factor penalised matrix factorization  

Tissue-specific input preparation 
Tissue-specific enhancer elements and enhancer-promoter coactivity associations were used for 

all tissues, and matched Hi-C and eQTL data when available. When not available, the union of 

the latter over the total available cell and tissue types was used as global reference of potential 

association. Likewise, global, tissue-agnostic DNAse-I activity associations and TAD domain 

annotations were considered for all tissues. 

Sliding-window factorization  
The algorithm used to conduct the matrix factorization was adapted from the original method 

proposed by Žitnik & Zupan 2015(21) and modified with sliding window settings and slightly 

different matrix operation algorithms. Factorization was conducted on sliding windows of 5M bp 

with 50% overlap along each chromosomes to focus on local patterns and at the same time make 

the optimization task computationally feasible. Different values for the hyperparameter k were 

used. The rank of each matrix is integer N*k, where N is the number of columns in the data type. 

10 different values of k (0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5) were tried on each window. 

As different initialization of G matrices give different factorization and there is no guarantee of 

global minimum, we used an ensemble learning strategy of running 20 rounds of the algorithm 

with slightly different initializations and averaged the outputs (21). The rank for each window 
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was determined by selecting k where a maximum kink was attained in total reconstruction error 

curve (21,37). The algorithm was stopped if the difference between two iterations was smaller 

than 0.01 or the maximum number of interaction (200) was reached.  

Enhancer-promoter interaction set 
In order to provide a set of high-confidence scored interactions, in addition to the direct output 

from the inference, we determined a cut-off value for the enhancer-promoter association score 

produced by SWIPE-NMF, filtering out interactions with lower scores. The cutoff was set so that 

the average number of promoters per enhancer was consistent with previous estimates (~3) (11). 

Given that a similar criterion for enhancer-enhancer and promoter-promoter interactions is not 

available, the filtering step was not performed for these.  

 

Enhancer-Enhancer and promoter-promoter interactions 
The factor 𝐺2 (Figure. 5.1C) produced by three-factor penalised factorization provides 

information about the learned structures of promoter networks. A weighted enhancer-enhancer 

interaction matrix was calculated as 𝐺2𝐺2
𝑇

 
for each sliding window.  Similarly, an enhancer-

enhancer interaction matrix was calculated as 𝐺1𝐺1
𝑇. 

 

Performance evaluation 
For five-fold cross validation experiments, 20% of the associations were randomly chosen and 

excluded from inputs. In addition, an equal number of non-interacting pairs were randomly 

selected to balance the data. When a whole dataset was left out to evaluate the performance of 

SWIPE-NMF, that dataset was used a ground truth for testing. Only interactions occurring at a 

distance larger than 5kb were considered for the analyses of biological correlates.  

Availability  
All the computational scripts are available at https://github.com/kaiyuanmifen/SWIPE-NMF 

All the regulatory region networks are available from Broad Institute server and will deposited in 

online repository.    
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