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ABSTRACT 32 

Immune checkpoint blockade (ICB) therapy has improved long-term survival for patients 33 

with advanced melanoma. However, there is critical need to identify potential biomarkers of 34 

response and actionable strategies to improve response rates. Through generation and analysis 35 

of 148 chromatin modification maps for 36 melanoma samples from patients treated with anti-PD-36 

1, we identified significant enrichment of active enhancer states in non-responders at baseline. 37 

Analysis of an independent cohort of 20 samples identified a set of 437 enhancers that predicted 38 

response to anti-PD-1 therapy (Area Under the Curve of 0.8417). The activated non-responder 39 

enhancers marked a group of key regulators of several pathways in melanoma cells (including c-40 

MET, TGFβ, EMT and AKT) that are known to mediate resistance to ICB therapy and several 41 

checkpoint receptors in T cells. Epigenetic editing experiments implicated involvement of c-MET 42 

enhancers in the modulation of immune response. Finally, inhibition of enhancers and repression 43 

of these pathways using bromodomain inhibitors along with anti-PD-1 therapy significantly 44 

decreased melanoma tumor burden and increased T-cell infiltration. Together, these findings 45 

identify a potential enhancer-based biomarker of resistance to anti-PD-1 and suggest enhancer 46 

blockade in combination with ICB as a potential strategy to improve responses. 47 
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INTRODUCTION 48 

In recent years, there has been tremendous progress in melanoma immunotherapy, 49 

including the FDA approval of anti-CTLA-4 antibodies (in 2011) and anti-PD-1 antibodies (in 50 

2014). Though response rates for monotherapy with these agents are modest (~15% for anti-51 

CTLA-4 and ~44% for anti-PD-1), a subset of responses are often durable (Brahmer et al., 2012; 52 

Hodi et al., 2010; Schadendorf et al., 2013; Topalian et al., 2012), with 2-year survival rates up to 53 

43% among patients who receive anti-PD-1 monotherapy and a 10-year survival rate of ~20% for 54 

those who receive anti-CTLA-4 monotherapy (Topalian et al., 2012; Topalian et al., 2014). 55 

Response rates are also significantly increased by combination anti-PD-1/anti-CTLA-4 therapy 56 

(Postow et al., 2015). However, a significant proportion of patients still do not achieve clinical 57 

response, and exhibit severe toxicity (Postow et al., 2015). Therefore, there is a critical unmet 58 

need to identify biomarkers that predict response or resistance to immune checkpoint blockade 59 

(ICB)—either as monotherapy or in combination—and to identify actionable strategies that will 60 

enhance the effectiveness of these potent therapies in the patients most likely to benefit.  61 

 The epigenome consists of an array of chromatin modifications, including DNA 62 

methylation and histone marks, which collectively form a dynamic state that is referred to as a 63 

“chromatin state”. The nature of chromatin states and their impact on associated genomic loci are 64 

determined by their constituent histone or DNA modification marks (Lee and Young, 2013). For 65 

example, the presence of the H3K27me3 mark (trimethylation of lysine 27 on histone H3) in 66 

promoters is associated with transcriptional repression, whereas H3K4me3 (trimethylation of 67 

lysine 4) is associated with transcriptionally active promoters. H3K4me1-modified and H3K27Ac-68 

modified nucleosomes are present only at enhancer elements, whereas the presence of 69 

H3K79me2 or H3K36me3 coincides with transcribed regions (Barski et al., 2007). Thus, profiles 70 

of histone modification marks generate a comprehensive map of the epigenome. 71 

Recent data indicate that responsiveness to ICB therapy may be associated with specific 72 

epigenetic processes. For example, regulation of histone modifications by HDAC, EZH2, or 73 
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KMT2D has been proposed to modulate either response to these agents or antitumor activity of 74 

immune cells (Maitituoheti et al., 2020; Peng et al., 2015; Wang et al., 2020; Woods et al., 2015). 75 

However, there is insufficient understanding of the epigenome content of ICB-sensitive and ICB-76 

resistant cases. Furthermore, whether specific patterns of chromatin modification states are 77 

associated with response to ICB has not been systematically investigated. As chromatin 78 

modification states are stable and heritable, specific patterns of chromatin modification states can 79 

potentially be used as biomarkers for ICB response (Mulero-Navarro and Esteller, 2008).  80 

By generating epigenome profiles of 36 melanoma samples treated with ICB at MD 81 

Anderson Cancer Center (MDACC), followed by validation in an independent cohort of 20 82 

melanoma samples treated with ICB at Massachusetts General Hospital (MGH), we demonstrate 83 

that an enhancer signature of 437 genomic loci in pre-treatment samples can predict non-84 

response of melanoma to ICB. Enhancer gains in non-responders were observed on a number of 85 

resistance-driving genes, and enhancer-blocking bromodomain inhibitors synergized with anti-86 

PD-1 antibodies in pre-clinical models. Altogether, we identify enhancer gains as an important 87 

epigenetic mechanism driving resistance to anti-PD-1 therapy in melanoma, which could be 88 

leveraged for biomarker development or novel therapeutic combinations. 89 

 

RESULTS 90 

To directly address whether epigenomic changes are associated with response to ICB 91 

therapy, we mapped chromatin state patterns in 36 metastatic melanoma samples from patients 92 

treated with nivolumab or pembrolizumab (anti-PD-1 antibodies) at MDACC (Fig. 1A and Table 93 

S1). Response in these patients was documented using RECIST criteria, which identified 4 94 

samples from patients who achieved complete response, 4 with partial response, 5 with stable 95 

disease, and 23 with progressive disease in response to ICB therapy (Fig. S1A-S1B). Overall, 13 96 

samples from patients with complete or partial response or stable disease were annotated as 97 

“responders (R)” and the 23 samples from patients with progressive disease were labeled as 98 
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“non-responders (NR)” (Fig. S1A-S1B). Samples were collected at 3 timepoints: 1) pre-treatment 99 

(n = 17), 2) on-treatment ( n = 4), and 3) post-treatment (n = 15).  100 

To identify chromatin state patterns, we profiled 6 reference histone modifications that 101 

mark promoter (H3K4me3), enhancer (H3K4me1 and H3K27Ac), transcribed (H3K79me2), and 102 

repressed (H3K27me3 and H3K9me3) states using high-throughput ChIP-sequencing 103 

methodology (Garber et al., 2012; Rai et al., 2015) in all 36 samples, generating 148 chromatin 104 

maps (Fig. S1C). This approach is similar to that utilized by ENCODE (Consortium et al., 2012) 105 

and NIH Roadmap projects (Bernstein et al., 2010) to determine basic epigenome maps in normal 106 

tissues and cell lines. As histone modifications exert their function in a combinatorial fashion, we 107 

identified such chromatin states using the ChromHMM algorithm (Ernst and Kellis, 2012). A model 108 

of 15 chromatin states was chosen for more in-depth interrogation into the biology of chromatin 109 

in anti-PD-1 response, as it presented sufficient resolution for biological interpretation (Fig. 1B 110 

and Fig. S1D). Annotation of these states based on the content of histone marks and their 111 

genomic locations revealed the presence of active promoter (E1, E2, E3), active enhancer (E6, 112 

E7), transcribed (E4, E5), polycomb-enriched (E11), heterochromatin/bivalent (E9), poised (E8, 113 

E10), and low (E12, E13, E14; merged as E12 afterwards) states (Fig. 1B).  114 

 115 

Chromatin state transitions between sensitive and resistant lesions  116 

We first identified chromatin state differences between pre-treatment samples belonging 117 

to the responsive (R) and non-responsive (NR) groups. To this end, we consolidated chromatin 118 

states using epilogos (see Methods) and computed transitions in these states between the 119 

responder and non-responder samples (Fig. 1C). The most notable transition was from the active 120 

enhancer state E7 in non-responder samples to low (E12), polycomb (E11), or repressed (E10) 121 

states in responders, based on the number of switching bins in the responder and non-responder 122 

groups (Fig. 1D). We identified 31,555 bins (1-kb segments) that showed transitions between 123 

active enhancer state E7 in non-responsive samples to low, repressive states E10, E11, and E12 124 
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in responsive samples (Fig. 1D). These differences in active enhancer states showed significant, 125 

yet modest, changes in corresponding gene expression (Fig. S1E). Observed differences in 126 

active enhancer chromatin state signals on these loci were also recapitulated when only H3K27ac 127 

signals were examined. H3K27ac signal was decreased in 24,862 peaks corresponding to 21,924 128 

bins with active enhancer states in pre-treatment samples from the responders compared to those 129 

from the non-responders (Figs. 1E, S1F). Average intensity of H3K27ac on these enhancers also 130 

showed a drastic increase in the non-responders compared to the responders, whereas the 131 

average intensity for H3K27me3 occupancy on these enhancers was significantly increased (Fig. 132 

S1G). We also noted that loci harboring active enhancer (E7) state in pre-treatment R samples, 133 

but not in pre-treatment NR samples were enriched surrounding genes involved in T cell function 134 

suggesting higher lymphocyte infiltration in responder samples (Figs. S1H). 135 

 136 

An enhancer signature predicts response to anti-PD-1 therapy in melanoma 137 

To establish multiple independent lines of evidence supporting a concrete set of 138 

epigenomic correlates of ICB resistance, we collected an independent cohort of 22 melanoma 139 

samples from the MGH biobank and generated H3K27ac ChIP-seq data (Fig. 1A and Table S1). 140 

To make our MDACC and the MGH datasets jointly analyzable, we defined a common metric that 141 

could be used across both cohorts by using MAnorm (Shao et al., 2012) to calculate a log2 ratio 142 

of read densities (M-value) between ChIP and a whole-cell extract control that was adjusted for 143 

the average log2 read density at all peaks (Figs. S2A-S2B). This allows any 2 peak regions to be 144 

compared on the same scale between the two distinct cohorts by accounting for variable total 145 

read depth at peak regions of interest. Using IDR (Irreproducible Discovery Rate) analysis (see 146 

Methods), we identified a subset of 84,317 out of 244,472 peaks as reproducible between the 147 

MDACC and MGH cohorts (Fig. 2A). These peaks were enriched in various functional classes, 148 

including promoter, intron, and intergenic areas (Fig. S2C).  149 
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Next, we subjected the M-values of this subset of peaks to differential peak calling via 150 

limma (Ritchie et al., 2015) in each cohort independently. We identified 5174 MGH and 8291 151 

MDACC pre-treatment peaks whose activity was significantly (p < 0.05) different between 152 

responders and non-responders (Table S2). To identify a replicated peak set, we intersected 153 

differentially enriched peaks within both the MDACC and MGH cohorts to determine whether this 154 

set exhibited statistically significant enrichment, above the null expectation. Only the pre-155 

treatment comparisons exhibited a significant enrichment in the number of replicated peaks (p = 156 

<2.2e-16, one-sided exact binomial test), and 437 peaks were doubly significant in both the 157 

MDACC and MGH pre-treatment comparisons. We also noted excess enrichment in the signal 158 

from the MDACC cohorts in both the pre-treatment (Fig. S2D) and on-treatment (Fig. S2E) 159 

comparisons. We also generated RNA-seq data on 44 ICB-treated melanoma samples consisting 160 

of 26 pre-treatment (14 NR and 12 R), 10 on-treatment (6 NR and 4 R) and 8 post-treatment (6 161 

NR and 2 R) samples from both MDACC and MGH cohorts. Here we noted 588 differentially 162 

expressed genes (DEGs) between NR and R at pre-treatment stage (Table S2).   163 

Next, to identify a subset of enhancers with predictive ability for patient response, we 164 

concentrated on the pre-treatment significant H3K27ac peak set overlapping between the 165 

MDACC and MGH cohorts. We utilized the 437 replicated peaks as a feature set in a cross-166 

validation setting and trained 2 random forest models: one in which the MDACC cohort was 167 

designated as the training set and the MGH cohort the testing set, and vice versa. The results 168 

were combined into a single receiver operator characteristic (ROC) for evaluation. We also 169 

evaluated the area under the ROC curve (AUC) as a measure of model performance. Using the 170 

437 peaks, we were able to achieve an AUC of 0.9 (Fig. S2F). However, in this analysis, features 171 

were determined by the union of the two datasets making it prone to potential data leakage 172 

between the training and testing cohorts. To prevent this issue, we performed leave-one-out 173 

(LOO) cross validation (CV) on N=22 pre-treatment ChIP-seq samples and N=26 pre-treatment 174 
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RNA-seq across the two cohorts. To generate the features, within each cross-validation fold 175 

(N=21 ChIP-seq training samples, N=25 RNA-seq training samples), we repeated our replicated 176 

peak calling procedure by finding the overlapping peaks with nominal p<0.05 in both the MDACC 177 

and MGH cohorts for each CV fold. We tested a total of 23,4457 RNA-seq genes and 84,317 178 

ChIP-seq peaks. These features were then used to train a random forest classifier with K=5 to 179 

K=20 trees on the training set, and subsequently tested on the N=1 testing set to construct the 180 

ROC across the 22 ChIP-seq and 26 RNA-seq CV folds. We took the highest performing 181 

classifiers for the ChIP-seq and RNA-seq separately and reported their performance. We 182 

observed that epigenomic features are moderately predictive of immunotherapy response, with 183 

an AUC of 0.842 (Fig. 2B). On the other hand, RNA-seq features showed much less predictive 184 

ability (AUC = 0.579) when evaluated using the same feature discovery framework described 185 

above (Fig. 2B). This relationship holds when the aforementioned approach is applied only on 186 

the pre-treatment samples for which both RNA-seq and ChIP-seq data are available (Fig. S2G). 187 

Our enhancer based classifier also performed better than prior biomarkers based on RNA 188 

expression patterns, tumor mutation burden (TMB), or histopathological features (Auslander et 189 

al., 2018; Johannet et al., 2021; Shi et al., 2020; Yan et al., 2020) (Fig. S2H). We further examined 190 

TMB in MDACC cohort by generating and analyzing WGS data from 34 samples and in MGH 191 

cohort by analyzing WES data from 8 samples, but failed to observe significant difference in 192 

mutation burden between R and NR patients (Fig. S2I). We also utilized the TMB data from pre-193 

treatment samples as a predictive feature for response in the MDACC cohort. In LOO-CV across 194 

N=13 MDACC samples with both H3K27ac and TMB data, we observed incorporating TMB data 195 

along with differential H3K27ac peaks (AUC=0.7143) as features to a random forest classifier 196 

with K=20 trees resulted in a slightly increased AUC compared to only using differential H3K27ac 197 

peaks alone (AUC=0.6905) (Fig. S2J). 198 

We next assayed to what extent these 437 peaks stratified progression-free survival in our 199 

clinical cohort. To do so, we performed Cox proportional hazards regression with M-values as the 200 
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design matrix which showed that 32 out of the 437 peaks significantly stratified survival in both 201 

the MGH and MDACC cohorts. As a result of increased peak signal, 29 out of the 32 peaks offered 202 

worse prognosis (Fig. 2C), whereas 3 out of 32 peaks offered better prognosis (Fig. S2K). Our 203 

results show that a distinct set of epigenomic peaks are significantly associated with treatment 204 

response and survival stratification in 2 independent cohorts, making these peaks optimal targets 205 

for follow-up prognostic studies.  206 

 207 

Enhancer activation targets genes contributing to anti-PD-1 resistance 208 

Do these differential enhancers between non-responders and responders play functional 209 

role during evolution of ICB resistance? To address this question, we first sought to identify the 210 

gene targets of NR- or R-specific enhancers by overlapping them with the enhancer-promoter (E-211 

P) annotation. As enhancers activate their target gene expression by looping onto the promoter, 212 

the E-P annotation was predicted using in-house H3K27ac HiChIP data from one of the short-213 

term melanoma culture (STC2765 which is derived from anti-PD-1 non-responder melanoma 214 

tumor) and from a prior study using 935 samples, covering a major fraction of human cell and 215 

tissue types (ENCODE + Roadmap or FANTOM5)(Cao et al., 2017) (see Methods). This 216 

identified 1318 gene targets of 966 reproducibly enriched enhancers (false discovery rate [FDR] 217 

< 0.1) in non-responsive samples (Table S2). To dissect whether enhancer peaks were derived 218 

from melanoma cells or tumor-infiltrating T cells (TILs), we overlapped the replicated enhancer 219 

peaks (562 NR-specific and 161 R-specific) with in-house H3K27ac ChIP-seq data on short-term 220 

melanoma cultures (STCs) from 10 patients (Terranova et al., 2021) and cognate TILs derived 221 

from 8 of them (Fig. 3A and Table S3). Pathway analysis of target genes of melanoma tumor cell 222 

enriched NR-specific enhancers showed MAPK pathway, Epithelial-to-Mesenchymal transitions 223 

(EMT), TGFb pathway among others (Fig. 3A), some of which have been previously implicated 224 

in immune evasion and immunotherapy resistance (Mariathasan et al., 2018; Terry et al., 2017). 225 
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These genes included known regulators of anti-tumor immune response such as NOTCH1, AKT1, 226 

TGFβ2, USP22, MYC, MITF, c-MET (Fig. S3A)(Batlle and Massague, 2019; Casey et al., 2016; 227 

Li et al., 2020; Meurette and Mehlen, 2018; Papaccio et al., 2018; Rogel et al., 2017; Wiedemann 228 

et al., 2019). Motif enrichment analysis (HOMER) provided insight into TFs that are known (such 229 

as NUR77, STAT4, IRF1) or unknown (such as ZNF189, ESSRB, BCL6, TBX20, SMAD4) to 230 

contribute to immune evasion or ICB resistance within the melanoma or TILs (Fig. 3B). Recent 231 

study of whole-exome and transcriptome meta-analysis of over 1,000 patients treated with ICB 232 

revealed that CXCL9/CXCL13 are the strongest predictors of response (Litchfield et al., 2021), 233 

consistently we also noted enhancer enrichment nearby these two genes in responder tumors 234 

(Fig. S3B). In NR samples, we also detected enhancer gains on TGFβ, PI3K-AKT and 235 

angiogenesis pathway genes that are known to cause systemic immunosuppression (Figs. S3C-236 

S3E)(Fukumura et al., 2018). Finally, we identified other potentially novel regulators of anti-tumor 237 

immune response such as FAM20C, RFPL2, MAMDC2, SPATA2 in melanoma cells (Figs. 3C,  238 

S3F-S3G and Table S3) (Lee et al., 2020; Schlicher et al., 2016; Xu et al., 2021). Integration of 239 

enhancer gains with gene expression data showed concomitant upregulation of gene expression 240 

of a subset of enhancer-target genes at the pre-treatment stage (Figs. 3D, S3I).  241 

Target genes of TILs-enriched enhancers (from 437 replicated H3K27ac peaks) were 242 

enriched in allogenic transplant, interferon signaling and other pathways which are known to play 243 

important roles in T cell differentiation and anti-tumor activity (Fig. 3A). Overlap of enhancers 244 

enriched in NR pre- or post-treatment tumors with those in isolated TILs identified genes in 245 

multiple categories: 1) known inhibitors of T cell activity such as CISH (Palmer et al., 2015); 2) 246 

important inhibitory checkpoint receptors, such as LAG-3 (Joller and Kuchroo, 2017) and BTLA 247 

(Watanabe et al., 2003), or their key partners, such as CD48 and CEACAM-1 (required for 248 

function of TIM-3 (Huang et al., 2015)); 3) genes known to mediate key interactions with antigen-249 

presenting cells or tumor cells CD244 and HVEM (Wherry and Kurachi, 2015); 4) transcription 250 

factors mediating T-cell exhaustion such as NR4A1(Chen et al., 2019)(Figs. 3E, S4A-S4C); 5) 251 
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potential novel regulators of T cell function such as FKBP3, LGALSL, LARP1, CEBPβ and KLF6 252 

(Fig. S4D).  Overall, these data suggest that replicated enhancers enriched in pre-treatment NR 253 

samples activate multiple resistance mechanisms in the melanoma cells as well as infiltrating T 254 

cells.  255 

 256 

c-MET Enhancers play functional role in mediating anti-tumor killing   257 

To gain a deeper insight into functional role of enhancer gains in ICB response biology, 258 

we focused on c-MET which showed increased enhancer peaks and associated gene expression 259 

in NR at pre- or post-treatment stage (Figs. 4A-4B, S4E-S4F). The c-MET locus harbored multiple 260 

distal enhancers that were present in NR tumors, but not in R tumors, and the HiChIP data 261 

provided evidence for looping between 4 distal enhancers (E1, E2, E3, and E4) and gene 262 

body/transcription start site (TSS) (Fig. 4A, 4C). These enhancers were also present in STC2765 263 

melanoma cells as suggested from overlapping H3K27ac peaks (Fig. 4A). Consistently, c-MET 264 

expression was localized to melanoma cells when published single cell RNA-Seq data was 265 

queried (Fig. S4G) (Tirosh et al., 2016). Silencing of these enhancers using specific gRNAs and 266 

dCas9-KRAB (Klann et al., 2017) significantly reduced expression of the c-MET gene in STC2765 267 

cells (Fig. 4C). The cell lines with dCas9-KRAB–mediated enhancer suppression also showed 268 

increased tumor killing by autologous T cells (TIL2765 that were derived from the same tumor as 269 

STC2765) in a co-culture assay, thus demonstrating enhancer functionality (Fig. 4D). 270 

Consistently, treatment with a c-MET inhibitor (Crizotinib) also showed enhanced T cell–mediated 271 

killing of STC2765 cells by TIL2765 (Fig. 4E). These data provide c-MET enhancers as an 272 

example of functional enhancer elements that contributes to immune evasion process during anti-273 

PD-1 treatment. Taken together with enhancer activation surrounding numerous regulators of 274 

anti-tumor immune response (Fig. 3), these data suggest that activation of enhancers could be a 275 

key epigenetic mechanism for activation of many regulators and cellular processes that promote 276 

resistance to ICB therapy. 277 
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 278 

Enhancer reprogramming during ICB treatment 279 

We next sought to define dynamics of chromatin states as patients progress or respond 280 

to anti-PD-1 therapy by computing chromatin state transitions between pre- and post-treatment 281 

samples. In responders, we primarily observed transitions of active states in pre-treatment to 282 

repressed states in the post-treatment. On the other hand, transitions in the non-responder 283 

samples were distributed more evenly between repressive and active states (Fig. S5A). To 284 

determine the reprogramming of active enhancers during the treatment stage, we computed the 285 

chromatin state transition of active enhancer state E7 between post-treatment and pre-treatment 286 

samples (Fig. S5B). Seven clusters were identified based on the transition of enhancer states, of 287 

which Cluster 1 enhancers gained repressive states or lost the active enhancer marking, whereas 288 

Cluster 4 enhancers remained in active enhancer state even at the post-treatment stage (Fig. 289 

S5B). Cluster 1 enhancers were enriched in VEGFA, autophagy, and HIF1 signaling, including 290 

VEGFA, RUNX3, and AKT2 genes (Figs. S5C-S5D and Table S4). Unaffected Cluster 4 291 

enhancers were enriched in TGFβ, PI3K/AKT/mTOR signaling pathways, AHR, and oxidative 292 

stress pathways, including genes such as the TGFβ and LOXL4 (Figs. S5E-S5F). These 293 

observations provide better understanding of the dynamics of enhancer states on specific 294 

pathways during anti-PD1 treatment.  295 

 296 

Combination of bromodomain inhibitors with anti-PD-1 enhances response in mouse 297 

melanoma models 298 

Since enhancer activation marks multiple genes that regulate resistance to anti-PD-1 299 

antibodies, we reasoned that inhibitors of acetylation-reader bromodomain, which relay the signal 300 

from the enhancers, could be used as an umbrella approach to target many resistance 301 

mechanisms at once along with anti-PD-1 therapy to enhance its efficacy. BRD4 (bromodomain 302 

containing protein 4) has been previously implicated as a major reader of H3K27ac on active 303 
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enhancers that acts with other transcriptional regulators to activate or enhance gene 304 

expression(Kanno et al., 2014). We noted higher BRD4 levels in metastatic melanoma in 305 

comparison to primary tumors in The Cancer Genome Atlas (TCGA) skin cutaneous melanoma 306 

(SKCM) dataset (Fig. 5A). Importantly, the tumors harboring higher levels of BRD4 survived 307 

poorly in comparison to those harboring lower levels of this protein (Fig. 5B). Similar trend for 308 

BRD4 (and other family members) expression with progression-free survival was also observed 309 

in Schadendorf cohort (Liu et al., 2019) of advanced melanoma patients treated with anti-PD-1 310 

(but without prior anti-CTLA-4 treatment) (Figs. 5C, S6A). Similar to previous reports in ovarian 311 

and triple negative breast cancers (Jing et al., 2020; Zhu et al., 2016), we also observed positive 312 

correlation between BRD4 expression and PDL1 expression (Fig. 5D). These clinical validations 313 

of the BRD4 manifest it as an optimal therapeutic target in melanoma. Treatment of tumors 314 

generated by transplantation of murine melanoma cell lines BP [from the Bosenberg model 315 

(Dankort et al., 2009)] and B16-F10 with the combination of iBET-762 and anti-PD-1 antibody 316 

significantly reduced tumor growth at doses that failed to generate much response when used as 317 

monotherapy (Figs. 5E-5F). Profiling of CD8+ T cells in these experiments revealed increased 318 

infiltration of these cells upon combination treatment in comparison to monotherapy (Fig. 5G, 319 

S6B). Consistently, we noted a modest negative correlation between BRD4 expression and 320 

infiltrating tumor cells in the TCGA cohort (Figs. 5H, S6C). In addition, treatment of STC2765 321 

cells with bromodomain inhibitors increased the TIL2765-mediated killing in a co-culture assay 322 

(Fig. 5I) and increased the MHC class I expression on tumor cells (Fig. S6D).  323 

 324 

Bromodomain inhibitor combination with anti-PD-1 downregulates ICB-resistance 325 

pathways 326 

To investigate the molecular mechanism underlying efficacy of bromodomain inhibitors 327 

and anti-PD-1 combination, we generated RNA sequencing-based transcriptome profiles and 328 

ChIP-Seq based genome-wide occupancy profiles for BRD4 and H3K27ac in the tumors from 329 
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different groups of treatment in mice. Analysis of RNA-Seq data showed that genes 330 

overexpressed in the tumors treated with combination (iBET-762 plus anti-PD-1) versus control 331 

were associated with immune response, while repressed genes were associated with TGFβ, MYC 332 

and epithelial–mesenchymal transition (EMT) pathways (Fig. 6A). Comparative analysis of 333 

H3K27ac ChIP-Seq data showed a significant decrease of average intensity of H3K27ac-marked 334 

enhancers in combination therapy versus vehicle control group while monotherapy showed 335 

intermediate effect (Fig. S6E). Integration of differentially enriched enhancers (DEEs) with DEGs 336 

showed loss of expression of a large number of genes (N = 714) in the combination treatment 337 

group in comparison to the monotherapy group (Table S5) or control (IgG) treated samples. While 338 

comparing these data with those from human patients (Fig. 3), we also noted reduced BRD4 and 339 

H3K27ac binding on enhancers for c-MET, TGFβ and genes belonging to PI3K-AKT-MTOR 340 

pathway, angiogenesis pathway (Fukumura et al., 2018) as well as immune checkpoint receptors 341 

in the combination treatment versus control groups. These data suggest that enhancer depletion 342 

may contribute to the decrease in tumor growth associated with combination treatment (Figs. 6B, 343 

S6F-S6J). Importantly, enhancer loss on many of these genes were associated with decreased 344 

gene expression in the combination treatment group (Figs. 6C, S6G-S6I, S6K). Hence, we 345 

extended the integration between DEGs and DEEs in mouse experiment to the gene targets of 346 

NR-enriched enhancers from patient samples. This revealed 107 genes with co-incident loss of 347 

expression, loss of binding of BRD4 and loss of H3K27ac active enhancer marks in combination 348 

iBET-762 plus anti-PD-1 treatment in comparison to the control treated group (Fig. 6D). These 349 

genes were enriched in WNT, TGFβ, epithelial-to-mesenchymal transition, and UV response 350 

pathways (Figs. 6E, S6L). Overall, these data provide evidence for enhancer-mediated activation 351 

of key resistance-driving genes/pathways as an epigenetic mechanism for resistance to ICB and 352 

demonstrate the need for clinical studies focused on the combination of enhancer-blocking agents 353 

and ICB to improve the response rate in melanoma and potentially other malignancies. 354 

 355 
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DISCUSSION 356 

Our data help address two major clinical needs regarding ICB therapy in metastatic 357 

melanoma: 1) biomarkers that predict ICB response and 2) combination therapy strategies to 358 

improve the response to ICB. We observed that gains in enhancer activity on a set of genomic 359 

loci are associated with response to ICB and thus could potentially act as a predictive biomarker 360 

of response to ICB in metastatic melanoma. Our data also suggest causative roles for enhancer 361 

gains in non-response to ICB and supports the use of enhancer-blocking clinical agents in 362 

combination with anti-PD-1 as a potential strategy that can be tested in future clinical trials. 363 

We identify an enhancer-based signature of 437 enhancers that could potentially be used 364 

as an epigenomic biomarker for non-response to ICB therapy in melanoma. Of these, 32 365 

enhancers further predicted progression-free survival, suggesting the potential use of this 366 

epigenomic signature as a prognostic indicator. These signatures have the potential to be utilized 367 

alone or in combination with other genomic, transcriptomic, or immune features to generate a 368 

multi-omic signature to predict response or survival in patients on ICB therapy. Indeed, 369 

incorporation of other features such as tumor mutation burden (Goodman et al., 2017) may 370 

enhance this predictive potential of enhancer signatures. Other features, such as specific genetic 371 

features, such as PTEN deletion (Peng et al., 2016), IFNγR deletions (Gao et al., 2016), PBRM1 372 

mutations, and KMT2D mutations (Wang et al., 2020), have been associated with response to 373 

ICB and could also be considered in combination with an enhancer-based signature to develop 374 

better prognostic biomarkers.  375 

Our work suggests that pre-existing enhancer states could contribute to innate resistance 376 

to immune checkpoint therapy. Importantly, the overlap between the MDACC and MGH cohorts 377 

was highly significant at the pre-treatment stage, but not at on-treatment or post-treatment stage, 378 

suggesting that baseline chromatin states of the tumor are likely important drivers of ICB response 379 

and impact of ICB therapy on enhancer patterns of melanoma tumors significantly varies between 380 

different patients. Indeed, pre-existing chromatin states differ between individuals and, depending 381 
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on their nature, could act as barrier to or facilitate activation of the tumor pathways that mediate 382 

immune recognition, immunogenicity or T cell–mediated killing (e.g., checkpoint receptors/ligands 383 

such as PD-L1, IFN/GAS/STING pathways, MHC expression or EMT) (Blank et al., 2005; Terry 384 

et al., 2017)  (Bhat et al., 2017; Garcia-Lora et al., 2003; Kwon and Bakhoum, 2020). As an 385 

extension, adaptive resistance could also result from gain of enhancers on ICB resistant pathways 386 

during the course of treatment.  387 

Bromodomain inhibitors serve as a useful tool for assaying whether enhancer blockade 388 

contributes to a specific phenotype. Here, combinations of bromodomain inhibitors enhance the 389 

activity of anti-PD1 suggesting that enhancer activation is likely a barrier to T-cell mediated killing 390 

of tumor cells. Indeed, integrative analysis of transcriptomic and epigenomic data between murine 391 

tumors treated with BRDi/anti-PD-1 combo and human anti-PD-1 tumors shows 362 enhancers 392 

(and their 107 target genes) as likely significant contributors to anti-PD-1 response. These 393 

enhancers target key pathways of WNT/b-catenin, EMT, TGFb and UV response consistent with 394 

prior roles of some of these pathways in immune modulation (Luke et al., 2019; Mariathasan et 395 

al., 2018; Terry et al., 2017; Trujillo et al., 2019). These enhancers/genes could potentially serve 396 

as pharmacodynamic markers for BRDi in future clinical/pre-clinical studies. 397 

Overall, our studies support further prospective clinical investigation into the utility of these 398 

enhancer signatures in predicting response to immunotherapy, offering prognostic information, 399 

and informing combinatorial clinical trials facilitated by cutting-edge epigenomic tools. Finally, our 400 

data suggest a need for future clinical studies to test potency of the BRDi or other enhancer 401 

blocking inhibitors [such as CDK9/7(Kwiatkowski et al., 2014; Morales and Giordano, 2016)] in 402 

combination with immune checkpoint inhibitors.  403 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.506051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506051


METHODS 404 

Patient samples  405 

Tissue samples from metastatic melanoma patients were collected and viably frozen as part of 406 

an IRB-approved tissue banking protocol at MDACC and MGH. All patients signed written 407 

informed consent prior to having the sample collected. All patients received either pembrolizumab 408 

or nivolumab as the anti-PD-1 therapy for their metastatic melanoma. Thirty-six melanoma tumor 409 

samples (17 samples at baseline, 4 samples on-treatment and 15 samples post-treatment) from 410 

MDACC and 20 samples (8 samples at baseline,  9 samples on-treatment and 3 samples post-411 

treatment) from MGH were analyzed by ChIP-seq. We also analyzed 12 RNA-access samples (7 412 

samples at baseline and 5 samples post-treatment) from MDACC and 32 RNA-seq samples (20 413 

samples at baseline and 12 samples post-treatment) from MGH for RNA expression. Response 414 

rates were assessed based on RECIST criteria. Sex, age, disease stage, and progression time 415 

of each sample are included in Table S1.  416 

 417 

Cell lines  418 

Short-term culture (STC) tumor cells and TILs pair were obtained from the same anti-PD-1–419 

treated melanoma patient. Short-term culture tumor cells were cultured in RPMI and GlutaMAX 420 

supplemented with 10% fetal bovine serum, HEPES, human transferred insulin, and β-421 

mercaptoethanol. TILs were cultured in RPMI and GlutaMAX supplemented with 10% human 422 

serum, sodium pyruvate, HEPES, human transferred insulin, β-mercaptoethanol and 3000IU/ml 423 

IL2 (PeproTech). The B16-F10 and BP melanoma cell lines and 293T cells were cultured in 424 

complete DMEM high-glucose medium, supplemented with 10% fetal bovine serum. All cell lines 425 

were cultured at 37°C with 5% CO2.   426 

 427 

Animal studies  428 
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All animal studies were performed according to the MDACC Institutional Animal Care and Use 429 

Committee (IACUC)–approved protocols. Five million B16-F10 or BP melanoma cells were 430 

injected subcutaneously into 6- to 8-week-old C57BL/6J mice (The Jackson Laboratory, #000664) 431 

and monitored every other day for tumor growth. On day 6 when tumors were palpable, mice with 432 

established tumor were randomly divided into 4 cohorts and treated every other day with IgG (100 433 

μg/mouse), anti-PD-1 (100 μg/mouse), iBET-762 (7.5 mg/kg), or PBS (phosphate-buffered saline) 434 

via intraperitoneal injection until 14 days. Tumor volume was measured every other day. Mice 435 

were euthanized once any arm of the treatment developed tumors approaching or beyond the 436 

IACUC-approved limit of 1.5 cm. 437 

 438 

MDACC ChIP-Seq 439 

ChIP was performed as described earlier (Terranova et al., 2018) with optimized shearing 440 

conditions and minor modifications. ChIP of 5-10 mg of flash-frozen patient melanoma tumors 441 

and mouse tumors were performed using 2 mg of antibody per ChIP experiment for H3K4me1 442 

(#ab8895), H3K27ac (#ab4729), H3K4me3 (#ab8580), H3K79me2 (#ab3594), H3K4me9 443 

(#ab8898), 3 mg of antibody per ChIP experiment for H3K27me3 (#ab6002), and 5 mg of antibody 444 

per ChIP experiment for BRD4 (#ab128874; all from Abcam). ChIP of 2-3 million of patient derived 445 

short-term culture tumor cells and TILs were performed using 5 mg of antibody per ChIP 446 

experiment for H3K27ac (#ab4729). Enriched DNA was quantified using Qubit (Thermo Fisher 447 

Scientific), and ChIP libraries were amplified and barcoded using the NEBNext Ultra II DNA library 448 

preparation kit (New England Biolabs) according to the manufacturer’s recommendations. 449 

Following library amplification, DNA fragments were size-selected (200-600 bp) using AMPure 450 

XP beads (Beckman Coulter), assessed using Bioanalyzer (Agilent Technologies), and 451 

sequenced at the Advanced Technology Genomics Core (MDACC) using Illumina HiSeq 2000 452 

(36-bp single-end format). 453 

 454 
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MGH ChIP-Seq 455 

A total of 20-50 mg of snap-frozen melanoma tissues were pulverized by Geno/Grinder for 2 min 456 

at 1500 rpm and then fixed with 1% methanol-free formaldehyde plus protease inhibitor cocktails 457 

(Roche) for 10 min at room temperature and quenched by 125 μM glycine for 5 min at room 458 

temperature. Samples were incubated in cold radioimmunoprecipitation assay buffer (RIPA 459 

buffer: 50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS) 460 

supplemented with protease inhibitor and sonicated using Covaris E220. Supernatants were 461 

quantified using Bio-Rad protein assay kits, and 1 mg of protein was loaded on 96-well plates for 462 

ChIP. 463 

Protein A/G–coated silica columns embedded pipette tips were used for 464 

immunoprecipitating H3K27Ac antibody–bounded proteins instead of Protein A/G beads. The 465 

DNA was eluted in 100 μl 50 mM Tris pH 8.0 and 10 mM EDTA with 1% SDS after several washes, 466 

and the eluates were treated with proteinase K for 16 h at 65°C before library synthesis using 467 

NEBNext Ultra II DNA library preparation kits (New England Biolabs). The samples were 468 

sequenced on HiSeq 2000 (Illumina), and 30-50 million paired-end reads from each sample were 469 

recorded. 470 

 471 

ChIP-seq analysis 472 

ChIP-seq data were quality controlled and processed by pyflow-ChIPseq (Tang, 2017a) a ChIP-473 

seq pipeline based on snakemake (Koster and Rahmann, 2012). Briefly, raw reads were mapped 474 

by bowtie1 (Langmead et al., 2009) to the hg19 genome. Duplicated reads were removed, and 475 

only uniquely mapped reads were retained. RPKM-normalized bigwigs were generated by deep 476 

tools (Ramirez et al., 2016), and tracks were visualized with Integrative Genomics Viewer 477 

(Robinson et al., 2011). Narrow peaks were called using MACS1.4 (Zhang et al., 2008) with a p-478 

value of 1e-5. For broad domains, the MACSv2.0.10 peak caller was used with a --broad-cutoff 479 

p-value of 1e-5. Chromatin state was called using ChromHMM (Ernst and Kellis, 2012), and the 480 
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emission profile was plotted by ComplexHeatmap (Gu et al., 2016). Chromatin state models were 481 

learnt jointly on all data for all 6 histone marks (H3K4me1, H3K4me3, H3K27ac, H3K79me2, 482 

H3K9me3 and H3K27me3) from 25 melanoma tumors and a model with 15 states was chosen 483 

for detailed analysis. Heatmaps were generated using R package EnrichedHeatmap (Gu et al., 484 

2018). Super-enhancers were identified using ROSE (Loven et al., 2013) based on H3K27ac 485 

ChIP-seq data. 486 

Chromatin State Transition Analysis 487 

ChromHMM profiles of 6 pre-treatment non-responders and 5 pre-treatment responders were 488 

consolidated using epilogos. A pipeline was made to automate the calculation, and scripts used 489 

to re-code the ChromHMM states can be found at https://github.com/crazyhottommy/pyflow-490 

chromForest/tree/vsurf_merge. With the output of epilogos, the chromatin state for each bin was 491 

chosen for the state that contained the greatest weights. A helper script can also be found at the 492 

link above. The consolidated ChromHMM profiles by epilogos were compared. The number of 493 

bins that switched chromatin states between groups was obtained. The number of bases that 494 

showed the transition change was obtained by multiplying the number of bins with the bin size 495 

(1000 bp). A Circos transition plot was made by the “circlize” R package. The script can be found 496 

in the GitLab repository 497 

https://gitlab.com/tangming2005/SKCM_IMT/blob/master/scripts/choose_state.py. 498 

 The consolidated ChromHMM profiles by epilogos were read into the R package 499 

EnrichedHeatmap. The chromatin state (categorical variable) was plotted in a 25-kb window 500 

centered on the active enhancer bins (chromatin state E7). Only bins that had E7 in one of the 501 

groups were retained for plotting. For 2-group comparisons, the bins were merged if the same 502 

change of state occurred in consecutive bins. A helper script can be found 503 

in https://gitlab.com/tangming2005/SKCM_IMT/blob/master/scripts/merge_bin.py. 504 

 505 

M-value processing and IDR calculations 506 
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To derive the M-values, we first used .bam files from both the ChIP and whole-cell extract files, 507 

along with a common peak file of 244,472 peaks, as inputs to MAnorm using default arguments. 508 

The common peak file was generated using the MACS2 “bdgdiff” function between combined 509 

pileups of responder and non-responder samples across the MDACC and MGH cohorts. The 510 

resulting normalized outputs from MAnorm were first used to filter samples by imposing an M > 0 511 

and p < 0.05 filter. All samples had to have 20% of peaks bypassing the threshold, or they were 512 

discarded from the analysis. Thirty samples from the MGH cohort passed this filter, while 27 513 

MDACC samples passed this filter. Next, we subjected the samples to the IDR algorithm. In this 514 

case, average M-values for all peaks were calculated for both cohorts, and the 2 average M-value 515 

vectors were utilized as inputs to the IDR algorithm with default arguments. The resulting 77,356 516 

peaks were considered the final replicated peak set used for all downstream analyses. 517 

 518 

Differential H3K27ac ChIP activity calling 519 

By leveraging the M-values, we determined the responder vs. non-responder differential 520 

response. We first batch-normalized the 2 cohorts’ M-values using the ComBat algorithm from 521 

the R package “sva” (Leek et al., 2012). Next, we used limma’s empirical Bayes modeling 522 

framework to construct a linear model regressing response and treatment time against M-values. 523 

We modeled patient identity—for patients with more than one sample analyzed— as a random 524 

effect. In order to be considered validated, a peak has to fulfill the nominal p-value cutoff of both 525 

the MDACC and MGH cohorts and the sign of the coefficients must be the same across the two 526 

cohorts. We note that this nominal p-value cutoff is ordinarily insufficient to control for false 527 

positive discoveries in a single cohort study. However, we require explicit confirmation for putative 528 

differential peaks in both MDACC and MGH cohort. The combined false positive rate for a gene 529 

to be falsely discovered in two distinct datasets is substantially lower than what the nominal p-530 

value cutoff would suggest.  531 
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 532 

Predicting immunotherapy response based on epigenomic features.  533 

We first stratified the dataset into 22 ChIP-seq and 26 RNA-seq cross-validation. Within each fold, 534 

the N=21 ChIP-seq and N=25 RNA-seq training examples were first stratified into MDACC and 535 

MGH cohorts. Within each cohort, we repeated the differential peak calling process to identify a 536 

set of replicated peaks at nominal p-value less than 0.05. We used the replicated peaks as 537 

features to a random forest binary classifier with 5 to 20 trees on the training data using the R 538 

package “randomForest”(Liaw and Wiener, 2002). We reported the ROC and auROC based off 539 

the classifier that had the highest LOO-CV auROC for each assay type. We then assessed the 540 

predictive of the performance by evaluating the predicted probability on the held out testing 541 

sample across all 22 ChIP-seq and 26 RNA-seq folds against the ground truth labels. We plotted 542 

the ROC and calculated the auROC using the R package “plotROC”(Sachs, 2017). 543 

 544 

Global test for groups of peaks 545 

To run the global test for genes, we first associated each of the peaks in the common peak set 546 

with a gene via the HOMER (Heinz et al., 2010) annotatePeak function. Each gene’s associated 547 

peaks were organized as a group for the global test. The global test was conducted using the 548 

function “gt” with default parameters using the “globaltest” R package (Goeman et al., 2004).  549 

 550 

RNA Access sequencing and analysis of MDACC tumors  551 

mRNA libraries of the melanoma tumor (n = 12) samples were prepared from 200 ng of total RNA 552 

using the TruSeq Stranded mRNA HT Sample Preparation Kit. Samples were dual-indexed before 553 

pooling. Libraries were quantified by qPCR using the NGS Library Quantification Kit. Pooled 554 

libraries were sequenced using the HiSeq 2000 (Illumina) according to the manufacturer’s 555 

instructions. An average of approximately 30 million paired-end reads per sample were obtained. 556 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.506051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506051


The quality of raw reads was assessed by using FastQC 557 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The raw reads were aligned to the 558 

Homo sapiens genome (hg19) using STAR 2.4.2a (Dobin et al., 2013) 559 

(https://github.com/alexdobin/STAR/releases/tag/STAR_2.4.2a). The mappability of unique reads 560 

on average was ~89% RNA-seq dataset. The raw counts were computed using the quantMode 561 

function in STAR. The read counts that were obtained are analogous to the expression level of 562 

each gene across all the samples. Genes with raw mean reads of greater than 10 were used for 563 

normalization and differential gene expression analysis using the DESeq2 (Love et al., 2014) 564 

package in R. Genes with an absolute log2 fold-change greater than log2(1.5) and p < 0.05 were 565 

called as differentially expressed genes. SKCM TCGA RNA-seq transcription comparison 566 

analysis was performed on the UALCAN website (Chandrashekar et al., 2017). 567 

 568 

RNA-seq and analysis of MGH tumors  569 

Total RNA from 5-20 mg of melanoma primary and metastatic tissues was extracted using AllPrep 570 

DNA/RNA Mini isolation kit (Qiagen). A total of 100 ng of total RNA was used as input for RNA-571 

seq libraries using SMARTer Stranded Total RNA-seq - Pico input (Takara Bio USA, Inc.) to 572 

remove rRNA transcripts. Each library was sequenced on HiSeq 2000 (Illumina), and 573 

approximately 20 million single-ended reads were recorded. Reads were aligned to Homo sapiens 574 

reference hg38 using STAR 2.5.3. Read counts were quantified using featureCounts. Differential 575 

expression was performed via limma-voom (Ritchie et al., 2015). Multiple biological replicates 576 

stemming from the same patient were treated as a random effect, whereas batch effects were 577 

treated as a fixed effect.  578 

RNA-Seq analysis of murine tumor cells 579 

mRNA libraries of the mouse melanoma tumor (n = 12) samples were prepared and sequenced 580 

using the HiSeq 2000 (Illumina).  RNAseq data were processed by pyflow-RNAseq (Tang, 2017b), 581 
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a snakemake based RNAseq pipeline. Raw reads were mapped by STAR (Dobin et al., 2013), 582 

RPKM normalized bigwigs were generated by deeptools (Ramirez et al., 2016), and gene counts 583 

were obtained by featureCount (Liao et al., 2014). Differential expression analysis was carried 584 

out using DESeq2 (Love et al., 2014). Gene set enrichment analysis (GSEA) was done using the 585 

GSEA tool (Subramanian et al., 2005) in pre-rank mode. The signed fold change *–log10(pvalue) 586 

metric was used to pre-rank the genes. 587 

 588 

WGS data analysis and TMB calculation 589 

Whole genome sequencing data from 34 anti PD-1 treated melanoma patient samples were 590 

aligned to human reference genome version hg38 using the Burrows-Wheeler Alignment tool 591 

(v.0.7.17), and duplicate removed by samtools (v.1.15). Somatic single nucleotide variations 592 

(SNVs) were identified using Mutect 2 (v.4.2.4.1), and variants likely to be germline were filtered 593 

out by gnomAD (v.2) and FilterMutectCalls. Tumor mutation burden was defined as the number 594 

of non-synonymous mutations in the coding region per megabase. 595 

 596 

HiChIP and data analysis  597 

HiChIP experiments were performed as previously described by Mumbach et al. (Mumbach et al., 598 

2016), with minor modifications. Briefly,1 × 107 ICB resistant STC cells were crosslinked. In situ 599 

contacts were generated in isolated and pelleted nuclei by DNA digestion with MboI restriction 600 

enzyme, followed by biotinylation of digested DNA fragments with biotin–dATP, dCTP, dGTP, and 601 

dTTP. Thereafter, DNA was sheared with Covaris E220 with the following parameters: fill level = 602 

10, duty cycle = 5, PIP = 140, cycles/burst = 200, and time = 4 min; ChIP was done for H3K27Ac 603 

using the anti-H3K27ac antibody. After reverse-crosslinking, 150 ng of eluted DNA was taken for 604 

biotin capture with Streptavidin C1 beads followed by transposition with Tn5. In addition, 605 

transposed DNA was used for library preparation with Nextera Ad1_noMX, Nextera Ad2.X 606 

primers, and Phusion HF 2X PCR Master Mix. The following PCR program was performed: 72°C 607 
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for 5 mins, 98°C for 1 min, then cycle at 98°C for 15 s, 63°C for 30 s, and 70°C for 1 min. Afterward, 608 

libraries underwent double-sided size selection with AMPure XP beads. Finally, libraries were 609 

paired-end sequenced with reading lengths of 76 nucleotides. HiChIP paired-end reads were 610 

aligned to the MboI-digested hg19 genome using the HiC-Pro pipeline with default conditions. 611 

The default setting of HiC-Pro removes duplicate reads, assigns reads to MboI fragments, 612 

identifies valid interactions, and generates high-resolution interaction matrices. HiChIP for 613 

H3K27ac generated high-resolution contact maps containing ~65 million valid interactions in 614 

STC2765 cells. Files for Juicebox visualization were generated using the HiC-Pro 615 

hicpro2juicebox.sh command based on the total valid interactions. H3K27ac-mediated loops were 616 

identified with the hichipper/diffloop programs using the HiC-Pro (Servant et al., 2015) output and 617 

ChIP-seq peaks from H3K27ac as anchor loci. Hichipper identifies intrachromosomal looping 618 

between anchor loci within 5 kb to 2 MB and produces a per-loop FDR value from the loop 619 

proximity bias correction implemented by Mango. Using the Mango output from hichipper (Lareau 620 

and Aryee, 2018), diffloop was used to filter significant loops (FDR < 0.01, width ≥ 5000, loop-621 

count ≥ 2) and define enhancer-enhancer and enhancer-promoter interactions.   622 

Enhancer data analysis – peak-to-gene linking predictions 623 

To identify putative causal links between enhancer peaks and gene expression, we used a HiChIP 624 

based approach. Enhancer-promoter interaction catalogs from STC2765 Hi-ChIP data and from 625 

a previous publication (Cao et al., 2017) was overlapped with the query enhancer peaks in order 626 

to obtain its taget refseq promoter. In addition, we also used the ChIPseeker package for 627 

annotation, using addFlankGeneInfo function for SEs. 628 

 629 

Pathway analysis 630 

Differential enhancer-associated genes in each group were imported into the clusterProfiler (Yu 631 

et al., 2012) or Consensus PathDB (http://cpdb.molgen.mpg.de/) for pathway analysis, restricted 632 

to Gene Ontology, KEGG, Hallmark, and WiKiPathways gene sets. The “enrichplot” package (Yu, 633 
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2019) was used to generate dot plots and networks for gene sets enriched with an FDR cut-off of 634 

< 0.05.  635 

 636 

Enrichment of motifs in cell-specific enhancer peaks 637 

To identify the motifs over-represented within each enhancer peak sets, we used the HOMER 638 

motif database and the coordinates of melanoma cells or TILs specific peak sets. 639 

 640 

Enhancer modulation using CRISPR-dCas9-KRAB 641 

To modulate gene expression without altering the target DNA sequences, an RNA-guided, 642 

catalytically inactive Cas9 (dCas9) fused to a transcriptional repressor domain (KRAB) was used 643 

to silence genomic regions identified as enhancers via KRAB repression at the promoter region. 644 

To generate a dCas9-KRAB effector stable cell line, we produced lentiviral particles from pHAGE 645 

EF1α-dCas9-KRAB (Addgene plasmid #50919) using Pax2 and VSVg. Transduced cells were 646 

selected for 6 days with the use of antibiotic resistance and were expanded to generate a stable 647 

cell line. 648 

Next, gRNAs were designed by using the GPP Web Portal of the Broad Institute. gRNAs 649 

sequences are listed in Table S6. Annealed gRNA oligos were ligated to pLKO.1-puro U6 sgRNA 650 

BfuAI stuffer (Addgene plasmid #50920), and lentiviral particles were generated. A transduction 651 

procedure was performed in the stable dCas9-KRAB cell line, and transduced cells having both 652 

dCas9-KRAB and gRNA constructs were selected with the use of antibiotic resistance. To 653 

evaluate the effects of the recruitment of dCas9-KRAB to the target enhancer’s genomic region, 654 

H3K27ac ChIP followed by quantitative PCR for enhancer regions was performed to assess the 655 

enrichment level of H3K27ac at the enhancer site in modulated cells compared with the non-656 

modulated parental control cells. To investigate the impact of enhancers’ modulation on the 657 

corresponding gene expression, qRT-PCR was performed for the target gene. 658 

 659 
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RT-qPCR 660 

RNA was isolated using RNeasy kit (qiagen) using manufacturer’s protocol. cDNA was prepared 661 

using SuperScript III first strand synthesis kit (Thermo Fisher) using 2ug of RNA and 662 

manufacturer’s protocol. Quantitative PCR was performed using QuantiTect Sybr Green PCR kit 663 

in Stratagene’s Mx3000p system.  664 

 665 

In vitro inhibitor assays  666 

Melanoma short-term culture line STC2765 were treated with crizotinib (2 μM, 24 h) or iBET-762 667 

(1 μM, 72 h) prior to co-culture with TIL2765 cells.  668 

 669 

TILs and matched tumor cells co-culture 670 

Tumor cells were labeled with DDAO-SE followed by addition of an effector cell suspension to 671 

achieve the desired effector:target ratio. These co-cultures were incubated at 37°C in 5% CO2 in 672 

a humidified incubator for 3 h. The cells were fixed and permeabilized with Cytofix/Cytoperm 673 

solution (BD Biosciences, #554722) for 20 min at RT immediately. The cells were stained for 30 674 

min on ice with 5 μl of biotin-labeled anti–cleaved caspase-3 monoclonal antibody (BD 675 

Biosciences, #550821). The cells were washed in Perm/Wash buffer (BD Biosciences, #554723) 676 

2 times and re-suspended in PBS and 1% fetal bovine serum for analysis on a flow cytometer. 677 

 678 

Flow cytometry  679 

TILs were stained with fluorochrome-conjugated monoclonal antibodies (CD3, CD4, and CD8 680 

from BD Biosciences) in FACS wash Buffer (Dulbecco’s phosphate buffered saline 1× with 1% 681 

bovine serum albumin) for 30 min on ice for surface staining. Dead cells were excluded using 682 

Ghost DyeTM Violet 450 cell viability dye from Tonbo Biosciences. For intracellular staining of 683 

active caspase-3, cells were fixed and permeabilized using Cytofix/Cytoperm (BD Biosciences) 684 
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and stained with anti–cleaved caspase-3 (BD Biosciences) on ice as well. Stained cells were 685 

acquired using BD FACSCanto II and analyzed using FlowJo software (Tree Star). 686 

 687 

Survival analysis 688 

The “survminer” package was used for drawing the Kaplan-Meier plots and defining the optimal 689 

threshold (function surv). The outcome was overall survival censored at 10 years. p-values 690 

reported for the univariate model corresponded to the log-rank test. 691 

 692 

Statistical analysis  693 

The 2-tailed Student t-test was used to determine the statistical significance of 2 groups of data 694 

using GraphPad Prism. Data are presented as means ± standard error of the mean (SEM, error 695 

bars) of at least 3 independent experiments or 3 biological replicates. p-values less than 0.05 696 

were considered statistically significant. *, p < 0.05; **, p < 0.01; and ***, p < 0.001. Correlation of 697 

expression level between BRD4 and CD274(PD-L1) was computed with nonparametric 698 

Spearman’s rank correlation coefficient.  699 

 700 

Data and code availability  701 

All ChIP-Seq dataset generated from ICB treated melanoma tumors have been deposited into the 702 

Gene Expression Omnibus (GEO) repository (accession #GSE171283). All codes are available 703 

at https://gitlab.com/railab.  704 
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FIGURE LEGENDS 705 

Figure 1: Comprehensive epigenome profiling of anti-PD-1–treated melanoma patients 706 

identify enhancer set as predictive biomarker of non-response to ICB. 707 

A. Schematic diagram describing the approach and main findings of the study.  708 

B. Emission parameters of the 15-state chromatin state model defined using ChromHMM on 709 

ChIP-Seq data for 6 histone modification marks (shown on x-axis) in the discovery cohort from 710 

MDACC (n = 36). Annotations on the left are derived from the relative enrichment of different 711 

histone marks and genomic distribution of the loci in that particular state (Fig. S1D). The intensity 712 

of the color in each cell reflects the frequency of occurrence of that mark in the corresponding 713 

chromatin state on the scale from 0 (white) to 1 (blue). 714 

C. Heatmap showing the fold enrichment of chromatin state transitions between responder and 715 

non-responder pre-treatment samples for the 15-state model defined by the ChromHMM. Color 716 

intensities represent the relative fold enrichment. Yellow box points to switches in active enhancer 717 

state E7 in non-responder to rest in responder. Diagonal is grayed to highlight non-self state 718 

transitions. 719 

D. Heatmap of chromatin state intensities for 31,155 loci that show switch from active enhancer 720 

state E7 (yellow) in non-responder pre-treatment samples (left) to any other state in responder 721 

pre-treatment samples (right) as shown by colors for each state. Note the high percentage of non-722 

responder active enhancer state E7 transitioning to low or repressed states E12 (black), E11 723 

(gray), or E10 (purple) in responders. p-value presented is for a 2-tailed Student t-test.  724 

E. Heatmap for H3K27ac mark in 24,862 peaks corresponding to 21,924 bins with active 725 

enhancer states that shows consistent depletion in responder pre-treatment samples (right 5 726 

samples) compared with non-responder pre-treatment samples (left 6 samples). Enhancers are 727 

shown in a 20-kb window centered on the middle of the enhancer in non-responder and responder 728 

pre-treatment samples.  729 
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Figure 2: Validation of enhancer signature’s prediction of nonresponse in an independent 730 

cohort. 731 

A. Average M-values for MGH vs. MDACC cohorts with IDR (Irreproducible Discovery Rate) 732 

status <0.01. Individual points represent averaged M-value across the MDACC cohort (x-axis) 733 

and across the MGH cohort (y-axis). Color denotes whether a particular peak was flagged by IDR.  734 

B. Receiver operating characteristic (ROC) of random forest trained predictive models using 735 

leave-one-out cross-validation across N=22 pre-treatment ChIP-seq samples and N=26 pre-736 

treatment RNA-seq samples. The features within each cross-validation fold were determined by 737 

finding the set of replicated peaks or genes across the MDACC and MGH cohorts and by 738 

computing the set of intersecting peaks or genes that were nominally significant in the training set 739 

within both cohorts. We analyzed a total of 23,457 RNA-seq genes and 84,317 ChIP-seq peaks. 740 

This was used to train a random forest within each training set with K=5 to K=20 trees. ROC and 741 

auROCs were derived from the best performing random forest classifier. The ROC curve and 742 

auROC was formed by concatenating predictions from the N=22 ChIP-seq and N=26 RNA-seq 743 

cross validation folds. 744 

C. Kaplan-Meier plots for progression-free survival of patients in MDACC (left) or MGH (right) 745 

cohorts for 29 out of the 32 peaks which offered worse prognosis as a result of increased peak 746 

signal. The normalized ChIP activity values were studentized across the MDACC cohort, then the 747 

median value was used to determine the high-activity vs. low-activity groups. There was a total of 748 

8 patients (4 low enhancer activity, 4 high enhancer activity) in the MGH group and a total of 14 749 

patients (7 low enhancer activity, 7 high enhancer activity) in the MDACC group. The peaks were 750 

selected using a p=0.05 cutoff for the Cox proportional hazards test.  751 
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Figure 3: Enhancer activation marks key immune resistance-associated genes in anti-PD-752 

1 non-responders. 753 

A. List of significantly enriched pathways in genes targeted by replicated H3K27ac peaks (n=966, 754 

p < 0.1) that overlap with those from isolated melanoma cells (n=270, left) or TILs (n=110, right) 755 

enhancer peaks.  756 

B.  List of significantly enriched transcription factor (TF) motifs in replicated H3K27ac peaks that 757 

overlap with those derived from isolated melanoma cells (n=270, left) or TILs (n=110, right) . 758 

C. IGV (Integrated Genomic Viewer) snapshot of aggregate H3K27ac profiles around TGFβ2, 759 

XIST, SPATA2, RFPL2 and MAMDC2 genes in MDACC cohort non-responder (NR) samples, 760 

responder (R) samples, isolated melanoma STCs, or isolated TILs. Highlighted regions show 761 

enrichment of H3K27Ac enhancer peaks in NR samples compared to R samples.   762 

D. Box plot showing mRNA expression level of TGFβ2, XIST, SPATA2, RFPL2 and MAMDC2 763 

genes in NR and R pre-treatment samples from both cohorts. In the box plot, the bottom and top 764 

of the rectangles indicate the first quartile (Q1) and third quartile (Q3), respectively. The horizontal 765 

lines in the middle signify the median (Q2), and the vertical lines that extend from the top and the 766 

bottom of the plot indicate the maximum and minimum values, respectively. 767 

E. IGV snapshot of aggregate H3K27ac profiles around CD48, LAG-3, and BTLA genes in 768 

MDACC cohort NR samples, R samples, isolated melanoma STCs, or isolated TILs. The red line 769 

loops depict E-P interactions identified from H3K27ac HiChIP data from STC2765 cells and/or 770 

previously predicted E-P networks (Cao et al., 2017). Highlighted regions show enrichment of 771 

H3K27Ac enhancer peaks in NR samples compared to R samples.    772 
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Figure 4: Enhancer activation of c-MET contributes to non-response to ICB.  773 

A. IGV snapshot of aggregate H3K27ac profiles around c-MET gene in NR samples, R samples, 774 

isolated melanoma STCs, or isolated TILs. The red line loops depict E-P interactions identified 775 

from H3K27ac HiChIP data from STC2765 cells and/or previously predicted E-P networks (Cao 776 

et al., 2017). Highlighted regions show enrichment of H3K27Ac enhancer peaks in NR samples 777 

compared to R samples.   778 

B. Box plots showing normalized RNA counts for c-MET gene between NR and R samples at pre- 779 

and post-treatment stages. 780 

C. Top, genomic locations of c-MET enhancers (En1 through En5) and HiChIP-derived E-P loops. 781 

Middle, schematic of dCas9-KRAB mediated repression of c-MET enhancer. Bottom, bar plot 782 

showing fold change of gene expression for c-MET gene upon targeting of enhancers by specific 783 

gRNAs as indicated.  784 

D-E. Percentage of cleaved caspase-3 positive STC2765 post co-culture with autologous TIL2765 785 

at 3 different ratios of TIL:STC ratio (1:1, 3:1 and 5:1). In panel D, STC2765 cells harboring dCas9-786 

KRAB and control or c-MET enhancer gRNAs were used as target cells, whereas in panel E, 787 

parental STC2765 cells were treated with c-MET inhibitor crizotinib (for 24 hrs at 2µM)  before 788 

and during co-culture. 789 

In (B) and (D-E) box plots, the bottom and top of the rectangles indicate the first quartile (Q1) and 790 

third quartile (Q3), respectively. The horizontal lines in the middle signify the median (Q2), and 791 

the vertical lines that extend from the top and the bottom of the plot indicate the maximum and 792 

minimum values, respectively. 793 
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Figure 5: Targeting enhancers using bromodomain inhibitors in combination with anti-PD-794 

1 antibody confers synergistic tumor growth reduction.  795 

 A. Box plot showing mRNA expression level of BRD4 in TCGA normal, primary, and metastatic 796 

melanoma patient samples. Metastatic melanoma patient samples display significantly higher 797 

expression in comparison to primary tumors.  798 

B. Kaplan-Meier plot of survival of melanoma samples in the TCGA, comparing overall survival 799 

between groups with high BRD4 expression (n=114) and low BRD4 expression (n=345). The log-800 

rank (Mantel-Cox) p value was used to assess the significance of difference in survival.  801 

C. Kaplan-Meier plot of progression-free survival of anti-PD-1 treated (without prior anti-CTLA4 802 

treatment, Schadendorf cohort) patients with high versus low BRD4 expression (split by median). 803 

The log-rank (Mantel-Cox) p value was used to assess the significance of difference in survival.  804 

D. Scatter plot showing the positive correlation between BRD4 and PD-L1 expression in 805 

Schadendorf cohort (Spearman’s rank test). 806 

E. Top: Schematic for mouse treatments. Bottom: Tumor growth curves for mice in 4 treatment 807 

categories: 1) IgG alone (100 μg/mouse), 2) anti-PD-1 antibody (100 μg/mouse), 3) bromodomain 808 

inhibitor iBET-762 (7.5 mg/kg) with IgG, or 4) iBET-762 with anti-PD-1 in B16-F10 cells.  809 

F. Tumor growth curves for BP  cells derived from Bosenberg’s model (Tyr-CreERT2, BRAFV600E, 810 

PTENL/L) upon treatment with the 4 different strategies shown in panel E.  811 

G. Graph showing the flow cytometry analysis results of infiltrated CD8+ T-cell percentages in 812 

tumors derived from experiment shown in panel E.  813 

H. Scatter plot showing the negative correlation between BRD4 expression (Log2TPM where TPM 814 

represents Transcripts per Million) and TIL infiltration score in TCGA melanoma cohort. 815 

I. Percentage of cleaved caspase-3 positive STC2765 cells post co-culture with autologous 816 

TIL2765 at 3 different ratios effector:target ratio (1:1, 3:1 and 5:1) when melanoma cells were 817 

treated with mock or iBET-762 (1µM) for 72 hrs. 818 
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In (A), (G) and (I) box plots, the bottom and the top of the rectangles indicate the first quartile (Q1) 819 

and third quartile (Q3), respectively. The horizontal lines in the middle signify the median (Q2), 820 

and the vertical lines that extend from the top and the bottom of the plot indicate the maximum 821 

and minimum values, respectively.  822 
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Figure 6: Molecular mechanism behind BRDi plus anti-PD-1 response.  823 

A. Dot plot showing significantly activated (left) and suppressed (right) pathways for differentially 824 

expressed genes in iBET-762 + anti-PD-1 treated tumors in comparison to anti-PD-1 treated ones. 825 

Dot size represents gene ratio, and colors represents adjusted p-values. 826 

B. IGV snapshot of aggregate BRD4 profiles around genes in c-MET, TGFβ3, VEGFC and 827 

PTGES2 in two different tumors belonging to the 4 treatment groups shown in Fig. 5E. Highlighted 828 

regions show loss of BRD4 peaks in iBET-762 + anti-PD-1 combination treatment samples 829 

compared to other treatment groups.   830 

C. Box plot for mRNA expression level (Log2TPM + 1) of genes shown in panel B. Each dot 831 

represents single sample. Colors represent 4 treatment groups shown in the plot. Bottom and top 832 

of the rectangles indicate the first quartile (Q1) and third quartile (Q3), respectively. The horizontal 833 

lines in the middle signify the median (Q2), and the vertical lines that extend from the top and the 834 

bottom of the plot indicate the maximum and minimum values, respectively. 835 

D. Top: Venn diagram showing the schematic of our approach to integrate mouse and human 836 

data. Bottom: Heatmaps for BRD4 and H3K27ac ChIP-Seq signal around differentially expressed 837 

genes overlapping between those in iBET-762 + anti-PD-1 versus IgG treated tumors and 838 

replicated non-responder–specific enhancers annotated genes. 839 

E. Pathway analysis (Hallmark) of 107 genes from human and mouse data overlap shown in panel 840 

D. Dot size represents gene ratio, and colors represents adjusted p-values.  841 
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SUPPLEMENTARY FIGURE LEGENDS 842 

Figure S1: Chromatin state differences between anti-PD-1 responders and non-843 

responders. 844 

A-B. Kaplan-miere curve showing progression-free survival (A) and overall survival (B) for 845 

responders and non-responders to anti-PD-1 therapy in melanoma (MDACC cohort). The log-846 

rank (Mantel-Cox) p value is shown for the difference in survival.  847 

C. IGV view of 6 different histone mark profiles (as noted on the right side) on the shown 848 

chromosomal region in all the anti-PD-1–treated patients. 849 

D. Genomic annotation enrichments for each chromatin state in anti-PD-1 non-responder (top) 850 

and responder (bottom) tumor samples. 851 

E. Box plots showing the log2 mean expression levels (Transcripts Per Million, TPM) of genes 852 

associated with enhancer state E7. Genes were linked using H3K27ac HiChIP data from 853 

STC2765 melanoma cell lines and FANTOM data as described in the methods section. The 854 

bottom and the top of the rectangles indicate the first quartile (Q1) and third quartile (Q3), 855 

respectively. The horizontal lines in the middle signify the median (Q2), and the vertical lines that 856 

extend from the top and the bottom of the plot indicate the maximum and minimum values, 857 

respectively. 858 

F. Average intensity plots for H3K27ac (left) and H3K27me3 (right) on loci that lost H3K27ac 859 

marks (from Fig. 1E) in pre-treatment R versus NR tumors from MDACC cohort. 860 

G. Heatmap of chromatin state intensities for 20,194 loci that showed a switch from E7 (yellow) 861 

in responder pre-treatment samples (right) to any other state in non-responder pre-treatment 862 

samples (left), as shown by colors for each state.  863 

H. Dot plot showing the pathways in genes targeted by E7 state enhancers that were significantly 864 

enriched in responders compared to non-responders. Dot size represents the gene counts; 865 

adjusted p-values are shown and are color-coded based on the level of significance. 866 
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 Figure S2: Validation of enhancer signature between MDA and MGH cohorts. 867 

A. Bar chart showing number of peaks in individual samples from MDACC cohort that pass quality 868 

threshold of M-value>0 and MAnorm p>0.1.  869 

B. Bar chart showing number of peaks in individual samples from MGH cohort that pass quality 870 

threshold of M-value>0 and MAnorm p>0.1.  871 

C. Functional enrichments for the 84,317 peaks passing the IDR threshold. 872 

D. QQ-plot between MGH (x-axis) and MDACC (y-axis) sample quantiles from the pre-treatment 873 

(PRE) comparison. 874 

E. QQ-plot between MGH (x-axis) and MDACC (y-axis) sample quantiles from the on-treatment 875 

(ON) comparison. 876 

F. Receiver operating characteristic (ROC) of random forest trained predictive models utilizing the 877 

437 replicated pre-treatment peaks. The ROC curve was formed by concatenating predictions 878 

from 2 models: a model trained exclusively on MGH data and tested on MDACC data, and a 879 

model trained exclusively on MDACC data and tested on MGH data.  880 

G. Receiver operating characteristic (ROC) of random forest trained predictive models using 881 

replicated ChIP-seq peaks or RNA-seq genes across N=22 pre-treatment ChIP-seq samples and 882 

N=26 pre-treatment RNA-seq samples. The features within each cross-validation fold were 883 

determined by finding the set of replicated peaks or genes across the MDACC and MGH cohorts 884 

by computing the set of intersecting peaks or genes that were nominally significant in both the 885 

MDACC & MGH cohorts in the training cohort. We analyzed a total of 23,457 RNA-seq genes and 886 

84,317 ChIP-seq peaks. This was used to train a random forest within each training set with K=5 887 

to K=20 trees, the reported the ROC & auROCs are derived from the best performing random 888 

forest classifier. The ROC curve and auROC was formed by concatenating predictions from the 889 

N=10 ChIP-seq and N=8 RNA-seq shared samples (samples with both RNA-seq and ChIP-seq 890 

from the pre-treatment timepoint) across cross validation folds.  891 
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H. Comparison of observed LOO CV auROC and literature auROC across melanoma checkpoint 892 

blockade response prediction studies. 893 

I. Box plots showing Tumor Mutational Burden (TMB) in all responder vs non-responder patients 894 

(top), in pre- or post-treatment responder vs non-responder patients (bottom). The bottom and 895 

the top of the rectangles indicate the first quartile (Q1) and third quartile (Q3), respectively. The 896 

horizontal lines in the middle signify the median (Q2), and the vertical lines that extend from the 897 

top and the bottom of the plot indicate the maximum and minimum values, respectively. 898 

J. Effect of TMB as a predictive feature for pre-treatment response prediction in the MDACC 899 

cohort. Here we evaluate two alternative models for predicting pre-treatment outcomes using 900 

ChIP-seq data in the MDACC cohort. In LOO-CV across N=13 MDACC samples with both ChIP-901 

seq and TMB data, we observed incorporating TMB data along with differential ChIP-seq peaks 902 

(AUC=0.7143) as features to a random forest classifier with K=20 trees resulted in a slightly 903 

increased AUC compared to only using differential ChIP-seq peaks alone (AUC=0.6905).	 904 

K. Kaplan-Meier plots showing progression-free survival in MDACC (left) or MGH (right) cohorts 905 

for 3 out of the 32 peaks which offered better prognosis as a result of increased peak signal. The 906 

normalized ChIP activity values were studentized across the MDACC cohort, then the median 907 

value was used to determine the high-activity vs. low-activity groups. There was a total of 8 908 

patients (4 low enhancer activity, 4 high enhancer activity) in the MGH group and a total of 14 909 

patients (7 low enhancer activity, 7 high enhancer activity) in the MDACC group. The peaks were 910 

selected using a p=0.05 cutoff for the Cox proportional hazards test. 911 
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Figure S3: Differences in enhancer activation on specific groups of genes between non-912 

responders and responders to anti-PD-1. 913 

A. IGV snapshot of aggregate H3K27ac profiles around NOTCH1, AKT1, USP22, MITF and c-914 

MYC in NR and R samples from both cohorts as well as isolated melanoma STCs or TILs. The 915 

red line loops in all panels in this figure depict E-P interactions identified from H3K27ac HiChIP 916 

data from STC2765 cells and/or previously predicted E-P networks (Cao et al., 2017). 917 

B. IGV snapshot of aggregate H3K27ac profiles around CXCL9 and CXCL13 in NR and R 918 

samples from both cohorts as well as isolated melanoma STCs or TILs .  919 

C-E. IGV snapshot of aggregate H3K27ac profiles around TGFβ3, TGFβR3, BMPR2, VEGFC, 920 

ANGPT2, VEGFB, PIK3CA, MTOR, RICTOR, FGF2, PDGFC and PTGES2 in NR and R samples 921 

from both cohorts as well as isolated melanoma STCs or TILs.  922 

F. IGV snapshot of aggregate H3K27ac profiles around TGFβ2, XIST, SPATA2, RFPL2, and 923 

MAMDC2 in MGH cohort NR samples, R samples, isolated melanoma STCs, or isolated TILs.  924 

G. IGV snapshot of aggregate H3K27ac profiles around FAM20C, LARP1B and LGALSL in NR 925 

and R samples from both cohorts as well as isolated melanoma STCs or TILs.  926 

H. Volcano plot showing MDACC and MGH cohort combined expression data differentially 927 

expressed genes (blue and red) in responder vs non-responders. X-axis shows log fold change 928 

(FC), and y-axis represents p-value of gene expression change. 929 

I. Box plot showing the gene expression level of LGALSL and LARP1B genes in non-responder 930 

and responder pre-treatment samples. In the box plot, the bottom and the top of the rectangles 931 

indicate the first quartile (Q1) and third quartile (Q3), respectively. The horizontal lines in the 932 

middle signify the median (Q2), and the vertical lines that extend from the top and the bottom of 933 

the plot indicate the maximum and minimum values, respectively.  934 
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Figure S4: Gene targets of activated enhancers in anti-PD-1 non-responders. 935 

A. IGV snapshot of aggregate H3K27ac profiles around CD48, LAG-3, and BTLA in NR and R 936 

samples from both cohorts as well as isolated melanoma STCs or TILs. The red line loops in all 937 

panels in this figure depict E-P interactions identified from H3K27ac HiChIP data from STC2765 938 

cells and/or previously predicted E-P networks (Cao et al., 2017). 939 

B. Schematic showing the key immune checkpoint receptors on exhausted TILs. 940 

C-D. IGV snapshot of aggregate H3K27ac profiles around CEACAM1, HVEM, NR4A1 and CD244 941 

(C); and FKBP3, CEBPB, and KLF6 (D) in NR and R samples from both cohorts as well as isolated 942 

melanoma STCs or TILs.   943 

E. IGV snapshot of aggregate H3K27ac profiles around c-MET in NR and R samples from MGH 944 

cohort as well as isolated melanoma STCs or TILs.   945 

F. Volcano plot showing MDACC cohort differentially expressed genes (gray dots) and 946 

differentially enriched enhancers targeted genes (red or blue) in R vs. NR samples. X-axis shows 947 

log2 fold change, and y-axis represents p-value of gene expression change. 948 

G. Distribution of expression of S100B, MITF, and MET genes in 2-dimensional embedding 949 

obtained by tSNE. Data were extracted from melanoma single-cell RNA-seq data (Tirosh et al., 950 

2016). Each cell is colored according to the gene expression level.  951 
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Figure S5: Chromatin state transitions during non-response to immunotherapy. 952 

A. Circos plot showing chromatin state switches between pre-treatment and post-treatment 953 

samples from responders (left) or non-responders (right). Chromatin state transitions were 954 

calculated based on epilogos (see Methods). Yellow color bands show high percentage of active 955 

enhancer state E7 transitioning to low or repressed states E12 or E11. 956 

B. Heatmap of chromatin state intensities for 31,155 loci that show switch from E7 in NR pre-957 

treatment samples to any other state in R pre-treatment, NR post-treatment, or R post-treatment 958 

samples as shown by colors for each state. Y-axis shows the clusters (numbered one through 959 

seven) of genomic loci that follow specific transition patterns. 960 

C-D. Dot plot representation of significantly enriched pathways in gene targets of enhancers 961 

present in Cluster 1 (C) and Cluster 4 (D) from panel B. Dot size represents the gene counts. 962 

Adjusted p-values are color-coded based on the level of significance. 963 

E-F. IGV snapshot of aggregate H3K27ac profiles around VEGFA, RUNX3, and AKT2 (E) and 964 

LOXL4, VIM, and MTOR (F) in NR and R samples from both cohorts as well as isolated melanoma 965 

STCs or TILs. Highlighted regions depict specific enrichment of H3K27Ac enhancer peaks in NR 966 

pre-treatment (E) or post-treatment (F) samples. The red line loops in all panels in this figure 967 

depict E-P interactions identified from H3K27ac HiChIP data from STC2765 cells and/or 968 

previously predicted E-P networks (Cao et al., 2017).  969 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.506051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506051


Figure S6: Molecular mechanism behind combination treatment of bromodomain 970 

inhibitors plus anti-PD-1. 971 

A. Kaplan-miere curve showing progression-free survival in two groups of patients: one bearing 972 

high levels of BRD2, BRD3 and BRD4 expression, and second bearing low levels of these BRD 973 

proteins in Schadendorf cohort of anti-PD-1 treated patients .  974 

B. Graph showing the flow cytometry analysis results of infiltrated CD8+ T-cell percentages in 975 

tumors derived from experiment shown in Fig.5F.  976 

C. Scatter plot showing the correlation between BRD4 expression and TIL infiltration in the TCGA 977 

melanoma cohort. 978 

D. Bar graph showing MHC class I expression in STC2765 cells which were untreated or treated 979 

with DMSO or iBET-762 (1µM, 72 hours) alone or along with IFN-γ. 980 

E. Average intensity curves of ChIP-Seq reads (RPKM) for H3K27ac in tumors treated with IgG, 981 

a-PD-1, IgG + iBET-762 or a-PD-1 + iBET-762 (corresponding to experiment shown in Fig. 5E) 982 

at all enhancer regions. Enhancers are shown in a 10kb window centered on the middle of the 983 

locus. 984 

F. IGV snapshot of H3K27Ac ChIP-seq signal around c-MET, TGFβ3, VEGFC and PTGES2 gene 985 

loci in tumors treated with IgG, a-PD-1, IgG + iBET-762 or a-PD-1 + iBET-762. 986 

G-I. IGV snapshot of aggregate BRD4 and H3K27ac (left) profiles around TGFβR3, BMPR2, 987 

VEGFB, ANG2, ANGPT2, FGF2, AKT1, MTOR, RICTOR and PIK3CA in in tumors treated with 988 

IgG, a-PD-1, IgG + iBET-762 or a-PD-1 + iBET-762. Box plot (right) shows mRNA expression of 989 

genes shown in panels F-H (left). Each dot represents a sample. Colors represent 4 treatment 990 

groups shown in the plot. In the box plot, the bottom and the top of the rectangles indicate the first 991 

quartile (Q1) and third quartile (Q3), respectively. The horizontal lines in the middle signify the 992 

median (Q2), and the vertical lines that extend from the top and the bottom of the plot indicate the 993 

maximum and minimum values, respectively. 994 
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J. IGV snapshot of aggregate BRD4 (top) and H3K27ac (bottom) profiles around LAG3, BTLA, 995 

CEACAM1 and NR4A1 in in tumors treated with IgG, a-PD-1, IgG + iBET-762 or a-PD-1 + iBET-996 

762. 997 

K.  Left, IGV snapshot of aggregate BRD4 (top) and H3K27ac (bottom) profiles around CXCL9 998 

and CXCL13 in tumors treated with IgG, a-PD-1, IgG + iBET-762 or a-PD-1 + iBET-762. Right, 999 

box plot representation of the mRNA expression level of CXCL9 and CXCL13. Each dot 1000 

represents a sample. Colors represent 4 treatment groups shown in the plot. In the box plot, the 1001 

bottom and the top of the rectangles indicate the first quartile (Q1) and third quartile (Q3), 1002 

respectively. The horizontal lines in the middle signify the median (Q2), and the vertical lines that 1003 

extend from the top and the bottom of the plot indicate the maximum and minimum values, 1004 

respectively. 1005 

L. Pathway network analysis for 107 genes from Fig. 6D-E obtained from overlap of human and 1006 

mouse data. 1007 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.506051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506051


SUPPLEMENTARY TABLES 1008 

Table S1. Details of the patient samples utilized in this study and quality matrix of the generated 1009 

chromatin data. 1010 

Table S2. List of significantly differentially enriched peaks and differentially expressed genes 1011 

between responder and non-responder pre-treatment samples in MDACC and MGH cohorts as 1012 

well as replicated peaks with annotation. 1013 

Table S3. List of H3K27ac peaks that are derived from overlap of replicated NR-specific and R-1014 

specific enhancers with tumor-specific or TIL-specific enhancers. 1015 

Table S4. List of active enhancer regions in cluster 1 and cluster 4 derived during analysis of 1016 

chromatin state transitions between pre-treatment to post-treatment samples. 1017 

Table S5. List of genomic regions and associated genes that display loss of BRD4 binding and 1018 

reduced expression in tumors treated with iBET-762 plus anti-PD-1 versus IgG.  1019 

Table S6. List of gRNAs used in the enhancer editing experiment shown in Figure 4. 1020 
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