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Abstract 

Genomic regions associated with complex traits and diseases are primarily located in non-coding regions of 
the genome and have unknown mechanism of action. A critical step to understanding the genetics of complex 
traits is to fine-map each associated locus; that is, to find the causal variant(s) that underlie genetic 
associations with a trait. Fine-mapping approaches are currently focused on identifying genomic annotations, 
such as transcription factor binding sites, which are enriched in direct overlap with candidate causal variants. 
We introduce CONVERGE, the first computational tool to search for co-localization of GWAS causal variants 
with transcription factor binding sites in the same regulatory regions, without requiring direct overlap. As a 
proof of principle, we demonstrate that CONVERGE is able to identify five novel regulators of type 2 diabetes 
which subsequently validated in knockdown experiments in pancreatic beta cells, while existing fine-mapping 
methods were unable to find any statistically significant regulators. CONVERGE also recovers more 
established regulators for total cholesterol compared to other fine-mapping methods. CONVERGE is therefore 
unique and complementary to existing fine-mapping methods and is useful for exploring the regulatory 
architecture of complex traits. 

Introduction 

Genome-wide association studies (GWAS) have revealed thousands of genetic regions in the human genome 
associated with diverse complex traits and diseases1, but the mechanistic basis of these associations remains 
largely uncharacterized.  With more than 88% of GWAS loci lacking common protein-altering variants, it is 
increasingly recognized that most GWAS variants may play gene-regulatory roles. Indeed, GWAS variants are 
enriched in tissue-specific enhancers, thus enabling the prediction of trait-relevant cell types2–5, putative causal 
variants6–8 and additional candidate loci2,9–11. In particular, a number of methods have been recently developed 
to exploit regulatory genomics data to fine-map GWAS SNPs12–14. One of the principal utilities of these 
methods is to identify functional annotations, such as transcription factor (TF) binding sites or epigenetic 
marks, which systematically overlap candidate causal variants.  
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Modification of transcription factor binding sites of GWAS trait regulators is one proposed mechanism through 
which non-coding variants overlapping regulatory regions may act. In type 2 diabetes for example, transcription 
factor binding has been verified to be altered by potential causal variants15: TR4 in the ANK1 locus16, PRRX1 
in the PPARG locus17, NEUROD1 at the MTNR1B locus18, FOXA1/2 binding at the CAMK1D locus19, and 
ARID5B binding at FTO20. However, only FOXA218 and RFX16 have been reported as being enriched genome-
wide for overlap with T2D variants.  

The lack of more globally altered transcription factor binding across GWAS loci led us to hypothesize that 
some causal variants at GWAS loci may be modifying binding sites of co-factors that in turn interact with trait 
regulators at the same locus. Under this hypothesis, we expect that causal variants co-localize with the 
binding sites of important regulators in the same regulatory region, but not necessarily overlap them (as is 
assumed by existing fine-mapping methods). Our hypothesis is consistent with previous observations in fine-
mapping of autoimmune diseases, where candidate causal variants were found to have strong tendency to 
occur proximal to known TF motifs, but not necessarily directly overlap21. 

We therefore introduce CONVERGE (COmplex trait Networks for Variant, Enhancer and ReGulator 
Elucidation), a statistical model that identifies significant co-localization of causal variants and TF binding sites 
within the same regulatory region, while relaxing the strict assumption that causal variants systematically 
overlap TF binding sites. As a result, CONVERGE is able to identify five novel regulators of T2D that validated 
in followup experiments, whereas other tested fine mapping methods (fgwas13 and LD Score12) did not find any 
enriched TFBS. Furthermore, CONVERGE recovered a similar proportion of established total cholesterol 
regulators as LD Score, but predicted more established regulators in total. Our trait regulators in turn prioritize 
novel loci not discovered in the training data but were subsequently identified as genome-wide significant in 
future and related GWAS studies, and furthermore prioritize suggestive loci more highly than expected by 
chance. Our trait and tissue-specific predictions of GWAS regulatory regions and upstream trait regulators form 
important starting points for the systematic experimental dissection of human disease.   

Materials and Methods 

Overview of genomic networks.  Our cell type specific genomic networks consist of nodes that represent 
transcriptional regulators, regulatory regions (enhancers and promoters) and single nucleotide variants.  Edges 
in these networks lead from regulators to regulatory regions and from single nucleotide variants to regulatory 
regions they tag (either by direct overlap in genomic coordinates or through linkage disequilibrium of 
neighboring variants).  Both node and edge construction are discussed below; unless otherwise specified, 
each genomic network is constructed independently of all others. 

Construction of network nodes representing regulatory regions, regulators, and single nucleotide 
variants.  From the Roadmap Epigenomics Project22, we obtained the locations of enhancers and promoters 
for each of 127 cell types, that were predicted based on a 15-state ChromHMM model segmentation of histone 
marks (primarily H3K4me3, H3K4me1 and H3K36me3). For each network, one node is constructed per 
regulatory region. 67% of regulatory regions show enhancer-associated signatures, compared to 33% that 
show promoter-associated signatures. One regulator node is constructed for each of 659 regulators for which 
we could obtain at least one position weight matrix23. Finally, one node is constructed for each genetic variant 
reported in the European population of the 1000 Genomes Project. 

Construction of network edges from regulators to regulatory regions.  To identify transcriptional 
regulators likely to bind each regulatory region, we obtained a set of 1,682 position weight matrices (PWM) 
spanning 659 transcriptional regulators23.  Up to 10 shuffled control PWMs were generated for each of the 
1,682 true PWMs to estimate the background number of PWM matches expected due to sequence 
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composition alone.  For each regulatory region in a given cell type, we scanned the region for matches to each 
true PWM, aggregating all matches across the entire region to obtain a single total score.  We then compute a 
background (expected) score by averaging aggregate scores computed individually for each of the shuffled 
versions of that PWM.  If the difference between the aggregate score of the true PWM versus the average 
aggregate score of the shuffled PWMs is positive, the PWM is considered to match the regulatory region with 
weight equal to the (positive) difference.  For each regulator, we then sum the positive difference-scores of the 
true PWMs belonging to that regulator to estimate a final regulator-regulatory region pair score. We construct 
network edges from regulators to regulatory regions when this pair score (between regulator and regulatory 
region) is at least 0.5.  Finally, given the 𝑇 × 𝑅 matrix of edges 𝐸 between 𝑇	regulators and 𝑅 regulatory 
regions, we re-scale all edges to correct weights by degree by setting 𝐸&(𝑡, 𝑟) = -(.,/)

0-(.,⋅)0-(⋅,/)
.  Rescaling helps 

prevent regulators with high out-degree and regulatory regions with high in-degree (network hubs) from being 
prioritized simply due to high overall connectivity. Previous work using the same motifs and epigenomic data 
show that motif enrichments in regulatory regions recapitulates known associations22. 

Construction of network edges from single nucleotide variants to tagged regulatory regions. We 
constructed an initial map of 1000 Genomes variants to regulatory regions by finding all variants directly 
overlapping regulatory regions in each cell type.  Then, using the 1000 Genomes Phase One release 3 
European population data24, we computed R2 values between all pairs of variants (within 1mb of each other) 
present in the European population.  Additional links were then constructed between variants and regulatory 
regions overlapping SNPs in high LD (R2 > 0.8).  For each variant in each cell type, the edges leading from that 
variant to tagged regulatory regions are assigned equal weights that sum to one. Finally, all variant 
chromosome coordinates were updated to hg19 using dbSNP version 138.  

Validation of regulator-enhancer edges in the network. We downloaded all ChIP-Seq genome-wide profiles 
for Tier 1+2 cell types from ENCODE on January 10, 2017. We removed those ChIP-Seq profiles 
corresponding to eGFP conjugated factors, as well as the MCF7 and Sknsh cell lines, as they were not 
included in the Roadmap Epigenomics Consortium epigenomes. This left eight cell types with ChIP-Seq data 
to validate our networks (H1, IMR90, A549, GM12878, HELA, HEPG2, HUVEC, K562). After mapping factor 
names to gene symbols, we only kept those TF ChIP-Seq experiments where the TF also has a corresponding 
node in the networks. For each TF ChIP-Seq profile, we then used the hypergeometric test to measure the 
significance of the overlap between ChIP-Seq peaks in enhancers, and the set of enhancer nodes that a given 
regulator node is connected to. For each TF ChIP-Seq experiment, we record the rank of the matched 
regulator node in the network relative to all other regulator nodes in the network, and compute the empirical 
cumulative distribution function to assess and visualize the overall concordance between regulator edges and 
ChIP-Seq experiments. 

Clustering regulators in each genomic network into regulatory modules. To cluster regulators into groups 
that bind similar regulatory regions, for each GN we computed a linear dot product kernel 𝐾 of the scaled 
network matrices 𝑁, defined as 𝐾 = 𝑁 × 𝑁4. 𝐾 was then used as input to the affinity propagation clustering 
algorithm25, and clustered in a two step procedure. First, it was run with similarity matrix set to 𝐾 and 
parameters 𝑝 = 𝑞 = NA. After the first round of clustering, we observed that only TFs with similar binding sites 
group together, though we expect there to exist sets of TFs with similar target regulatory regions despite 
having different sequence binding preferences. We therefore ran affinity propagation a second time to discover 
“meta-clusters”, only using the exemplar regulators discovered in the first iteration (and the corresponding 
submatrix of 𝐾), again with 𝑝 = 𝑞 = NA. Each regulator was assigned to a meta-cluster based on its exemplar 
identified in the first iteration of affinity propagation, and that exemplar’s subsequent assignment to a meta-
cluster in the second iteration of affinity propagation. 
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Genome-wide association P-values.  We collected a compendium of meta-GWAS summary statistics for 
analysis, with particular focus on type 2 diabetes26 and lipid traits (HDL, LDL, and total cholesterol)27,28. See 
Supplementary Note 1 for a full list of GWAS. We collected P-value summary statistics (median of 2,462,778 
SNPs per study) from their respective web sites, and updated SNP locations and identifiers to hg19 using 
dbSNP version 138.  Only SNPs that were identified in the 1000 Genomes Phase One release 3 were kept. 
SNPs within 2Mb of the coding region of all HLA genes were removed to identify signal outside of the 
polymorphic HLA region.   

LD pruning and SNP classification by association P-value. The remaining SNPs from each GWAS 
(median of 2,451,650) were then pruned by iteratively selecting the SNP with the smallest P-value, then 
removing all other SNPs within a 1mb window whose pairwise LD (as estimated from the 1000 Genomes 
Phase One release 3 European population24) was greater than 0.2, leaving a median of 40 SNPs per study.  
We assigned each SNP to one category of significance, distinguishing: (a) genome-wide significant loci, 
defined as those pruned SNPs whose association P-value is less than 5x10-8; (b) suggestive loci, defined as 
those whose P-value is less than 5x10-6, but greater than 5x10-8. Finally, for each cell type analysis separately, 
we merged the pruned GWAS variants whose tagged regulatory regions overlap (by at least one region) into a 
single agglomerated GWAS variant, such that any regulatory region in the cell type is tagged by zero or one 
GWAS variants. 

Predicting GWAS trait tissues based on regulatory enrichment in GWAS SNPs. This prediction involves 
three steps.  

a) Classification of SNPs into SNP-groups based on genomic features. We generated SNP-groups that group 
SNPs based on similar genomic features as follows.  We first ranked all GWAS variants by (i) minor allele 
frequency (MAF) in the 1000 Genomes European population; (ii) distance to nearest protein coding gene 
transcription start site; and (iii) approximate number of SNPs in LD (computed as the sum of all R2 values 
between the query SNP and all other 1000 Genomes SNPs within a distance of 250kb).  For each of these 
three features, the ranked set of variants were divided into 15 approximately equally sized bins, then each SNP 
was grouped with other SNPs that fall into the same bin for all three features (yielding a total of 153=3,375 
SNP-groups).   

For each SNP-group, we defined the number of independent loci within that group by: (a) identifying all pairs of 
SNPs within the SNP-group in linkage disequilibrium (R2 >= 0.8); (b) using these pairwise links as edges in a 
graph, where each node is a member SNP of the SNP-group; and (c) computing the number of connected 
components in this graph as a conservative estimate of the number of independent loci in that SNP-group (not 
all connected SNPs within each group are directly in linkage disequilibrium). 

b) Removal of annotations of SNPs tagging constitutively active regulatory regions. For GWAS tissue-specific 
enrichment testing below, we identified the set of SNPs that tag constitutive regulatory regions for exclusion 
because they are uninformative for identifying enrichment of GWAS SNPs in cell type specific regulatory 
regions. First, we identified all SNPs that tag any regulatory region in each cell type.  The 127 cell types have 
previously been categorized based on tissue of origin22, so we defined a SNP as tagging a constitutive 
regulatory region if it covers at least 75% of the tissue groups, where a tissue group is considered covered if 
the SNP tags a regulatory region in at least 25% of the member cell types of that tissue group. Specifically in 
our method for identifying cell type specific enrichment of GWAS SNPs, these constitutively-tagging SNPs are 
not considered to tag any regulatory region. This resulted in the removal of 9% of SNPs that tag at least one 
regulatory region in one cell type.  

c) Permutation testing. For each GWAS trait and each cell type, we use the SNP-groups to count the number 
of independent suggestive GWAS SNPs (P < 5x10-6) that tag a regulatory region in that cell type.  We then 
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used our 3,375 SNP-groups to generate permuted SNP sets of the same number of independent loci (and 
furthermore with the same number of variants from each SNP-group). Our test statistic is the number of 
independent loci that tag a regulatory region, and we generate 106 permutation sets to compute an empirical 
P-value for the enrichment of a set of GWAS variants to locate near regulatory regions of a particular cell type. 
Trait tissues were defined as those GWAS-cell type enrichments passing a per-trait Bonferroni significance 
cutoff of 0.01.  

Identifying trait-regulators and regulatory modules.  Our statistical model CONVERGE is applied 
independently for each GWAS-trait tissue combination, to infer a trait pathway that consists of a set of trait 
regulators and trait regulatory regions (a subset of which are targeted by GWAS variants).  

CONVERGE assumes the following input data is available and known prior to analysis:  

• A trait tissue of the GWAS variants, for which we have already inferred a genomic network 𝑁.  This 
network 𝑁 connects a set of 𝑇 regulators with a set of 𝑅 regulatory regions, with edge weights 𝑁7,/ 
connecting each regulator 𝑓 to each regulatory region 𝑟, which is inferred as described above.  

• A SNP-to-region network 𝑣 where 𝑣:,/ = 1 if regulatory region 𝑟 is tagged by GWAS variant 𝑠, else 
𝑣:,/ = 0. From 𝑣, we can compute a partitioning of the set of all 𝑅 regulatory regions in the network, Ω =
{1,… , 𝑅}, into three distinct groups, e.g., Ω = Ωbg ∪ Ωfg ∪ Ωunk: (1) Ωbg represents those ‘background’ 
regulatory regions that are not tagged by a GWAS variant are assumed to not be in the trait pathway 
during training; (2) Ωfg represents those ‘foreground’ regulatory regions tagged by a GWAS variant in a 
1-1 relationship (e.g. the corresponding GWAS variant only tags a single regulatory region), and 
therefore are assumed to be the target regions of GWAS variants; and (3) Ωunk represents those 
ambiguous regulatory regions located in a GWAS locus with multiple other regulatory regions, for which 
it is unclear which regulatory region in the locus is the target. 

 
From Ω, CONVERGE then defines a set of 𝑅 ‘trait-regulatory region’ variables 𝜃/ indicating whether a given 
regulatory region r is a trait-regulatory region (𝜃/ = 1) or not (𝜃/ = 0). CONVERGE sets 𝜃/ = 0 for background 
regulatory regions 𝑟 ∈ Ωbg and 𝜃/ = 1 for foreground regulatory regions 𝑟 ∈ Ωfg, therefore treating these 
variables as observed data. From the observed data, CONVERGE infers the following latent variables and 
model parameters: 

 
• CONVERGE infers the regulatory region indicator variables 𝜃/ for those regions 𝑟 ∈ Ωunk located in 
GWAS loci tagging multiple regulatory regions. Here the model assumes exactly one regulatory region in 
each GWAS locus is a trait-regulatory region, and the remaining are zero, e.g. Σ/𝑣:,/𝜃/ = 1 for all GWAS 
loci 𝑠. 
• A set of weights 𝛼 of length 𝑇 indicating the influence of each regulator on the trait pathway. Larger 𝛼 
indicates more influence and a higher enrichment of that regulator’s targets in GWAS target regions. Trait 
regulators are defined as all transcriptional regulators whose weight is positive, i.e., 𝛼7 > 0. 

 
We use the expectation maximization algorithm to perform inference and learning.  

Expectation maximization (EM) algorithm for learning CONVERGE. For CONVERGE, the EM algorithm 
can be thought of as iteratively adjusting weights 𝛼7 of the regulators of the genomic network that specify the 
trait regulators, in order to maximize the flow of weight from the regulators to the GWAS variants, while 
minimizing flow to non-GWAS target regulatory regions (e.g. the background regulatory regions). Initialization: 
We first randomly assign non-zero weights to a subset of regulators to choose the initial trait regulators, and 
randomly select a target regulatory region for each GWAS SNP. E-Step: The current set of weights on the 
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regulators is propagated through the genomic network to the regulatory regions to form prior probabilities, and 
the target GWAS regulatory regions 𝜃/	(𝑟 ∈ Ωunk) are updated such that regulatory regions with higher prior 
probability are more likely to be a GWAS target regulatory region. M-step: Given the current set of GWAS 
target regulatory regions 𝜃/, we re-weigh the regulators 𝛼7 to identify a set of trait regulators that best 
distinguish GWAS target regulatory regions from all other regulatory regions in that cell type. We iterate the E-
step and M-step until convergence. Regulators with positive weights 𝛼7 after convergence are labeled as trait 
regulators. See Supplementary Note 2 for full details of the model learning procedure. 

Permuting the genomic networks for statistical significance testing of trait pathways. In order to assess 
statistical significance of a trait pathway, we generated 500 permutations of each genomic network as follows. 
We first ranked all regulatory regions by (a) length; (b) number of 1000 Genomes European SNPs overlapping 
the regulatory region; (c) average minor allele frequency of SNPs overlapping the regulatory region; and (d) 
average specificity of the regulatory region, defined as the number of cell types that have an overlapping 
regulatory region. For each of these four features, the ranked set of variants was divided into 5 approximately 
equally sized bins (except for the specificity feature, which was divided into 10 bins). Each regulatory region 
was then grouped with other regulatory regions that fall into the same bin for all four features (yielding a total of 
10x53=1,250 region-groups). We then generated 500 randomized versions of each GN by permuting the labels 
of regulatory regions within the same region-group. Our permutation scheme is designed to maintain the in and 
out degrees of both the regulators and regulatory regions, to ensure statistically significant trait pathways are 
not due to GWAS variants tagging regulatory regions of high degree. 

Calculating priorities for regulatory regions using trait-regulators. After CONVERGE is trained using a set 
of GWAS variants and a genomic network, we computed the values 𝑃(𝜃/ = 1|𝑁, 𝛼) for all regulatory regions 𝑟. 
We then computed 𝑃randommax(𝜃/ = 1|𝑁, 𝛼), the maximum value of 𝑃(𝜃/ = 1|𝑁, 𝛼) achieved from 500 random 
permutations of the GN (described above). The priority of a regulatory region is defined as 𝑃(𝜃/ = 1|𝑁, 𝛼) −
𝑃randommax(𝜃/ = 1|𝑁, 𝛼). 

Partitioning variants into those in the trait pathway and those that are not. For each GWAS trait and trait 
tissue for which we found a statistically significant trait pathway, we then sought to identify which subset of the 
GWAS variants contributed to the trait pathway and identification of trait regulators (Fig. 2). Within the context 
of a trait tissue, we therefore partition GWAS variants into one of three categories: 

1. No regulatory activity: variants that do not tag any regulatory region in the trait tissue genomic network 
are ignored and assumed not to belong to the trait pathway. 

2. Regulatory activity at locus, not in trait pathway: variants that tag at least one regulatory region in the 
trait tissue, but when the network is permuted, the regulatory region is assigned a priority at least as 
large as its priority under the real network, in at least 5% of the permutations. 

3. Regulatory activity at locus, in trait pathway: variants that tag at least one regulatory region in the trait 
tissue, and when the network is permuted, the regulatory region is assigned a priority at least as large 
as its priority under the real network, in less than 5% of the permutations. 

Calculating the regulator z-scores and regulator network ranks. Trait regulators are defined as those 
regulators whose weights 𝛼7 are estimated by CONVERGE to be greater than 0. To quantify the extent to 
which each regulator is specific to the trait (and not simply a hub in the GN), we computed a regulator z-score, 
defined as the z-score of the regulator weight (computed on the real network) relative to the mean and 
standard deviation of the weight assigned to the same regulator under 500 permutations of the network 
(described above). We also compute a regulator network rank, defined as the regulator’s relative rank with 
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respect to the fraction of times it is selected as a trait regulator in the 500 permutations of the corresponding 
network (described above). A network importance score of 1.0 means the regulator was most often selected in 
the permuted networks than any other regulator, whereas a score of 0 means the regulator was selected the 
least frequently in the permuted networks. 

siRNA knockdown of T2D factors and assessment of glucose-stimulated insulin secretion in 
pancreatic INS-1 𝜷 cells. T2D regulators were identified as all regulators whose weights 𝛼7 are estimated by 
CONVERGE to be greater than 0. We identified negative control regulators by permuting the network (in a 
node-degree sensitive way described earlier) 500 times, averaging the weights 𝛼7 learned for each factor 
across the 500 permutations as described above, then selecting the factors with highest average weight as 
negative controls. The rat insulinoma cell line INS-1 was cultured in RPMI medium (supplemented with 10% 
fetal bovine serum, 100 mM sodium pyruvate, penicillin/streptomycin and 50 μM 2- mercaptoethanol). Cells 
were treated with 25nM nontargeting (NT) control or siRNA targeting the predicted T2D regulators (HOXA9, 
ZSCAN4, OTX1, EGR, ID4, SMAD4), as well as the negative controls (NEUROD2, ITGB2, ZNF384, GFI1, 
GATA1, BATF3) (ON-TARGETplus human siRNA SMARTpool (Dharmacon, USA)) using HiPerFect (Qiagen, 
Germany) according to the manufacturer’s protocol. After 72 hours, the medium was changed to low glucose 
concentration (5 mM) for 24 h. On the next day the medium was changed to low glucose (5mM) or high 
glucose medium (25mM) (stimulated) for 1 hour to induce glucose-stimulated insulin-secretion. The medium 
supernatant was collected and insulin concentrations were measured using a commercially available insulin-
ELISA (Mercodia, Sweden). The cells were harvested in buffer RLT (Qiagen, Germany) and frozen at -80 C for 
extraction of RNA and determination of knockdown efficiency. We focused on a cellular phenotype that is 
amenable to quantitative evaluation, namely glucose-stimulated insulin secretion capacity of pancreatic 
insulinoma INS-1 beta cells, measured using the enzyme-linked immunosorbent assay, and used it to evaluate 
the trait regulators predicted for type 2 diabetes in the pancreatic islet network (Fig. 3b). For siNT, OTX1, ID4, 
EGR, ZSCAN4, HOXA9 and SMAD4, seven replicates were successful. Five replicates were successful for 
NEUROD2 and ITGB2, while four replicates were successful for ZNF384, GFI1, GATA1, and BATF3. 
Increased levels of glucose in the circulation lead to increased glucose uptake into pancreatic beta cells, which 
in turn leads to increased insulin secretion. This process is impaired type 2 diabetic patients and was therefore 
selected as the phenotype of interest. 

Predicting novel GWAS loci. For the LDL, HDL, total cholesterol and triglyceride level traits, we were able to 
obtain GWAS summary statistics collected at two different dates, one in 201028 and one in 201327. Prediction 
consisted of two steps:  

a) Training. We used the historical data (2010) to train CONVERGE and prioritize regulatory regions. We 
identified statistically significant trait pathways in the liver network for HDL, LDL and TC traits, and therefore 
prioritized all liver regulatory regions with respect to the trait regulators for each of those three traits.  

b) Evaluation. For each of the three traits, we identified all “novel” regulatory regions tagged by the genome-
wide significant loci from the more recent study (2013) but were not tagged by any of the genome-wide 
significant loci in the historical study (2010). We hypothesized that these novel regulatory regions should be 
enriched for true GWAS target regulatory regions. We therefore evaluated each of the three traits’ regulatory 
region prioritizations both by how highly ranked these novel regulatory regions were on average (AUROC), and 
whether the top ranked regions specifically were enriched in novel regulatory regions (AUPR). To assess 
prediction performance, we also measured these AUROC and AUPR performance measures when liver 
regulatory regions were prioritized using the permuted networks. 

Predicting suggestive GWAS loci. We also tested CONVERGE prioritization of regulatory regions for their 
ability to predict suggestive GWAS loci. Similar to our procedure for testing novel GWAS loci, for each 
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combination of GWAS trait and trait tissue for which a statistically significant trait pathway was identified, we 
then identified all regulatory regions tagged by suggestive GWAS loci (5 × 10NO < 	𝑃 < 5 × 10NQ) but not 
tagged by the genome-wide significant GWAS loci. Unlike the prediction of novel loci, where we expect most 
loci to be real, we reasoned that many regulatory regions tagged by suggestive GWAS loci were not bona fide, 
and therefore the appropriate accuracy measure in this experiment (AUPR) is one that yields high values when 
the most prioritized regulatory regions are enriched for some of the suggestive loci, as opposed to a measure 
that yields high values when all suggestive loci are more highly prioritized overall compared to other regulatory 
regions (e.g. AUROC). 

Estimating the number of additional trait regulatory regions in the genome. To estimate the total size of 
the regulatory architecture of each trait, we counted the total number of regulatory regions in each target cell 
type that were not tagged by GWAS loci but exceeded a priority threshold set by regulatory regions tagged by 
suggestive GWAS loci. That is, under the assumption that at least one of the suggestive GWAS loci is bona 
fide (and therefore a regulatory region in its locus is a true trait regulatory region), we used the maximum 
priority value obtained by any regulatory region tagged by a suggestive GWAS locus as the threshold for 
identifying novel candidate regulatory regions. 

Transcription factor and cell type enrichment testing with fgwas. Fgwas (version 0.3.6) was run with 
default parameters and using the suggested workflow in the manual for testing individual annotation 
enrichment, except in cases where the summary statistics explicitly list the number of cases and controls, in 
which case the –cc option was used13. When the summary statistics released for each GWAS trait did not 
include the number of cases and controls used for testing each SNP, we used the number of cases and 
controls reported in the original study. When no Z-score or direction of effect was reported (only a P-value 
given), we converted the P-value to a Z-score. Because conversion of P-values from summary statistics to Z-
scores requires use of the qnorm() function in R, and qnorm returns –Inf for p-values smaller than 1e-323, we 
approximate the qnorm of smaller pvalues with the qnorm of 1e-323. Minor allele frequency, when not reported 
in the original summary statistics, were replaced with values computed from the 1000 Genomes Phase One 
data. SNPs from summary statistics were further restricted to those in the 1kG European population, so all 
traits were treated homogeneously. Enrichment of a specific annotation for a GWAS trait was computed using 
a likelihood ratio test, comparing the likelihood of fgwas fit with an annotation, compared with the baseline (no 
annotation). For identifying enriched cell types, we used the same Roadmap epigenome annotations used for 
CONVERGE described above. For TF enrichments, we used two sets of transcription factor binding sites. The 
first set we generated by identifying all transcription factor motif matches across the human genome using the 
same set of 659 motifs used to generate our genome networks, except we only keep motifs that have a 
conservation score of at least 0.523 (“Set 1”). The second set of motif instances we use are provided by 
Kitchaev et al. for 165 factors14 (“Set 2”). 

Transcription factor and cell type enrichment testing with LD Score (LD Score). For each input file of 
GWAS summary statistics from the original studies, we used the munge_sumstats.py script from LD Score12 
version 1.0.0 to extract the relevant summary statistics. For identifying enriched cell types, we used the same 
Roadmap epigenome annotations used for CONVERGE described above. We performed TF enrichment 
testing while controlling for all 53 categories of cell type-agnostic annotations in the baseline model29, as 
outlined in the LD Score manual, and retrieving the P-values associated with each of our annotations. 
Transcription factor enrichment testing used the Set 1 and Set 2 TF annotations described above for fgwas. 
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Results: Inference of 127 genomic networks 

Linkage disequilibrium (LD) is a barrier to identifying co-localized TFBS and GWAS variants, as a GWAS SNP 
can tag multiple regulatory regions. We therefore construct genomic networks linking regulators, regulatory 
regions and GWAS SNPs to help identify GWAS target regulatory regions and upstream regulators. Previous 
studies constructing networks linking regulators to targets focused on using either ChIP-Seq profiles from 
multiple cell types to construct a single human regulatory network30, or constructed cell type-specific TF-TF 
networks by computationally predicting the binding locations of TFs in the promoter regions of other TFs31. 
Neither of these are applicable to our study because they are either not cell type-specific or do not consider 
distal regulatory elements where GWAS loci may reside. Therefore, we began by linking GWAS variants into 
127 distinct tissue and cell type-specific genomic networks (GNs) (Fig. 1), each consisting of:  

• Regulatory region nodes representing tissue-specific regulatory regions22, of which there are a median of 
146,754 regulatory regions in a given genomic network (Supplementary Fig. 1).  

• Variant nodes representing common genetic variants. 

• Regulator nodes representing sequence-specific transcription factors (TFs).  

• Variant edges connecting genetic variants to the regulatory regions whose activity they may affect. These 
reflect either direct overlap in genomic coordinates of variants and regulatory regions, or indirect overlap 
when a variant is in LD with another variant overlapping a regulatory region.  

• Regulator edges connecting regulators to the regulatory regions they bind, as predicted by their known 
DNA sequence preferences. On average, regulatory regions are linked to 8 regulators, and each regulator 
targets ~1,700 regions (Supplementary Fig. 2). 

We validated the inferred regulator-regulatory region edges in our networks by comparing them to all available 
TF ChIP-Seq genome-wide profiles generated by the ENCODE consortium (Supplementary Fig. 3). For each 
cell type for which ChIP-Seq data was available and we inferred a genomic network, we assessed the 
statistical significance of the overlap of each ChIP-Seq profile (corresponding to peaks in one cell type for one 
TF) and the edges from each individual regulator node in the network. For each ChIP-Seq profile, we used the 
rank of the correctly matched node in the network to assess the accuracy of the network, where smaller rank 
indicates a more relatively significant overlap between the correct TF and the corresponding ChIP-Seq profile. 
Across all tested cell types, the correct regulator node was within the top 5 most significant overlapping TFs for 
50% of the ChIP-Seq experiments tested, and was within the top 50 most significant overlapping TFs for 80% 
of the ChIP-Seq experiments.  

Based on network connectivity, GWAS variants are predicted to have diverse impact on gene regulation 
depending on the particular tissue in which it acts. In the 42 GWAS we analyzed, GWAS variants tagged up to 
49 distinct regulatory regions in a given cell type, with a median of 2 regions per regulatory variant 
(Supplementary Fig. 4). Furthermore, of variants tagging at least one region, 53% tagged more than one 
regulatory region per tissue type (ambiguous GWAS variants) (Supplementary Fig. 5), highlighting the 
ambiguity of the mechanism of action of many GWAS variants. Regulatory regions tagged by ambiguous 
GWAS variants have an average pairwise similarity (Jaccard index) of 3% with respect to their upstream 
regulators, further demonstrating the diversity of possible functional consequences of GWAS variants.  

Results: Predicted trait tissues of GWAS variants distinguish related phenotypes 

To further validate the structure of the genomic networks, we used the SNP-regulatory region links to predict 
trait-relevant tissues of GWAS, in a manner analogous to previous approaches that identify overlap between 
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GWAS variants and regulatory annotations for individual tissues12–14,21,22,32. The regulatory architecture of a 
complex trait and its associated variants is expected to be dependent on context, for example the trait tissues 
in which the variants act, and identifying trait tissues allows us to substantially reduce the number of candidate 
variants for each of these traits by focusing on those overlapping regulatory regions active in trait tissues. Here 
we designed a test that specifically uses our genomic networks, so that we can validate the correctness of the 
network structure. Our SNP permutation-based approach uses random sets of GWAS SNPs to control for 
minor allele frequency, distance to transcriptional start site and LD block size. To identify only the strongest 
tissue enrichments, we removed the constitutive regulatory region annotations (see Methods), which led to an 
increase in specificity of our predictions at the cost of power.  

We collected a comprehensive catalog of case-control and quantitative GWAS summary statistics 
(Supplementary Table 1), and predicted the trait tissues for each GWAS (Fig. 2a). We found that the predicted 
GWAS trait tissues agree well with our current physiological understanding of the etiology of these diseases 
and traits (Fig. 2a), and were able to recognize important differences in the tissue/cell types underlying related 
traits known to affect distinct biological processes.  

First, we recovered known important differences between low-density lipoprotein and high-density lipoprotein 
cholesterol (LDL vs. HDL). LDL-associated variants target primary liver and intestine tissue, consistent with 
both intestinal and hepatic regulation of cholesterol absorption, hepatic lipoprotein remodeling, and LDL 
cholesterol synthesis after cholesterol intake via bile acid synthesis and excretion33. In contrast, HDL variants 
target adipose nuclei and skeletal muscle, consistent with their roles in peripheral tissues34,35, and in diverse 
types of immune cells, including B and T cells, consistent with roles in innate and adaptive immune response, 
inflammatory response tuning, antigen presentation in macrophages, and B and T cell activation36.  

Second, we recovered known differences between type 1 diabetes and type 2 diabetes (T1D vs. T2D). T2D-
associated variants were only predicted to target pancreatic islets, consistent with dysregulation of insulin 
secretion processes that control blood glucose levels37,38, and similarly to fasting glucose level-associated 
variants. In contrast, T1D-associated variants only targeted T regulatory cells, indicating dysregulation of 
immunity, consistent with the well-established auto-immune basis of T1D39.  

Third, we recovered known differences between Alzheimer's disease and schizophrenia variants. We found 
that AD-associated variants target primary monocyte immune cells, consistent with monocyte-specific eQTL 
enrichment for AD variants40, and a recently-recognized immune and inflammatory basis of AD in mouse and 
human41. In contrast, Schizophrenia-associated variants target multiple brain tissues, including fetal brain 
tissue, brain germinal matrix, neurospheres, and embryonic stem cells, indicating dysregulation of early brain 
development.  

Results: Bayesian model for predicting GWAS regulatory trait pathways 

Having identified trait tissues for each GWAS, we next developed CONVERGE, a probabilistic graphical model 
to simultaneously identify the target regulatory region in each GWAS locus, as well as the trait regulators that 
co-localize with the candidate causal variant (Fig. 3a, Supplementary Fig. 6). Our Bayesian model receives as 
inputs a set of GWAS SNPs and one genomic network corresponding to a trait tissue. In turn, CONVERGE (1) 
predicts the trait regulators in that cell/tissue type, (2) prioritizes all regulatory regions in the genome with 
respect to evidence that they are trait regulatory regions based only on trait regulator binding, and (3) predicts 
the target regulatory region within each GWAS locus (Fig. 1b).   

CONVERGE makes two assumptions about trait pathways: 
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1. Trait regulators collectively bind to trait-regulatory regions, which in turn regulate the expression of trait-
genes that influence the phenotype. GWAS loci target a subset of these trait-regulatory regions. 

2. Trait-regulatory regions can be distinguished from non-trait regulatory regions based on over-
representation of binding sites of trait regulators. 

From these two assumptions, we arrive at the following conclusions: 

1. If the target regulatory regions of each GWAS locus are known, the trait regulators could be identified 
by finding regulators whose binding sites are collectively over-represented in the GWAS target regions, 
compared to other regulatory regions in the genome. 

2. Similarly, if the trait-regulators were known, we can identify the GWAS target regulatory region at each 
GWAS locus as the one bound by the most trait-regulators, and prioritize novel regulatory regions also 
based on which ones are bound by trait regulators. 

Because neither the trait regulators nor the GWAS target regions are known beforehand, CONVERGE uses 
the expectation maximization algorithm to iteratively infer both sets of unknowns (Fig. 3a). What makes this 
inference procedure tractable is that approximately half of the GWAS loci tag only a single regulatory region in 
its locus and are therefore unambiguous with respect to the target regulatory region. These unambiguous 
GWAS loci help narrow down the set of candidate trait regulators and guide the target region selection for the 
ambiguous GWAS loci (that tag multiple regulatory regions). 

Results: CONVERGE partitions ambiguous GWAS variants into cell type specific 
pathways 

For each trait tissue of each GWAS from Figure 2a, we applied CONVERGE to identify trait-pathways, and 
found statistically significant trait pathways for nine combinations of GWAS and trait tissues (Supplementary 
Table 2), including type 2 diabetes, total cholesterol, LDL and HDL cholesterol levels. Of the 55% of GWAS 
loci that tag at least one regulatory region in a trait tissue, CONVERGE definitively assigns a median of 16% of 
GWAS loci to a trait pathway in a trait tissue. While significant trait pathways were typically only detected in 
one trait tissue for a GWAS, CONVERGE identified three trait-pathways for LDL cholesterol. Across the three 
trait tissues, 46% of variants tag regulatory regions in more than one cell type, initially suggesting they may 
potentially play a role in trait pathways in multiple tissue types. CONVERGE, however, assigns 42% of these 
ambiguous loci to one specific trait pathway in exactly one target cell type, suggesting by combining 
information across multiple loci we can disambiguate these loci.  

Results: CONVERGE identifies trait regulators of type 2 diabetes and total cholesterol 

CONVERGE predicted a median of 50 trait regulators per study that play key roles in phenotypic variation. We 
began with analysis of T2D as only one trait tissue (pancreatic islets) and six corresponding trait regulators 
were predicted (HOXA9, ZSCAN4, OTX1, EGR, ID4 and SMAD4), allowing us to comprehensively validate all 
predicted regulators for this trait (Fig. 3b,c). Only EGR had prior evidence of a role in T2D, though OTX1 and 
HOXA9 are from the homeobox family for which other members have been implicated in type 2 diabetes 
pathogenesis and insulin sensitivity and secretion42. The prediction of HOXA9 was made because HOXA9 
binding sites are present in two of the nine T2D loci in the islet network (rs4506565 at the TCF7L2 locus and 
rs9936385 at the FTO locus, Fig. 3b, purple lines), more than expected based on HOXA9 binding across islet 
regulatory regions in general (HOXA9 is in the bottom 8% of factors when ranked by promiscuity). Of the two 
T2D loci to which HOXA9 mapped, the GWAS locus at TCF7L2 had only one regulatory region in its locus and 
was therefore unambiguous with respect to the target regulatory region, which in turn helped identify HOXA2. 
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The causal regulatory region predicted by CONVERGE at TCF7L2 overlaps the rs7903146 variant, which has 
been established as the most likely causal variant due to its impact on chromatin and regulatory activity43. 

siRNA-mediated knockdown of 5 of 6 of the predicted factors showed no effect on basal insulin secretory rate, 
but showed a significant reduction in glucose-stimulated insulin secretion in our assay (Fig. 3c), yielding a T2D-
consistent phenotype. Strikingly, knockdown of each of the six controls selected based on permuted networks 
that maintain node degree yielded no such change in glucose-stimulated insulin secretion. This confirms the 
ability of CONVERGE to recognize trait regulators that are specific to the trait and not simply a hub in the 
genomic network.  

To test the hypothesis that CONVERGE identifies regulator enrichments that are not the result of direct overlap 
of causal variants with transcription factor binding sites, we ran both fgwas13 and LD Score12 to identify globally 
enriched TFBS in T2D GWAS loci (Fig. 3d). We first confirmed both fgwas and LD Score were able to recover 
pancreatic islets as a trait tissue of T2D (Supplementary Figures 7-8), then predicted enriched TF binding sites 
using two separately collected sets of TF annotations: those used to construct CONVERGE’s genomic 
networks, and also those provided by another group14. We did not find any enriched TFBS globally across the 
T2D loci using either method or either set of annotations (Fig. 3d). We repeated our CONVERGE analysis 
testing multiple thresholds for determining variants in LD with the lead GWAS variants and found our T2D 
regulator set was highly robust (Supplementary Fig. 9). Taken together, our results suggest there exists some 
regulators that strongly co-localize with a subset of T2D GWAS loci, but do not directly overlap candidate 
causal variants. 

We next turned our attention to total cholesterol (TC), as the role of the liver in its regulation is well 
characterized. CONVERGE predicted 65 total cholesterol regulators in adult liver (Fig. 4a), including 15 factors 
previously established in lipid and cholesterol homeostasis. The predicted regulators also established in the 
literature include SREBP1a, SREBP1c and SREBP2, three members of the sterol response family known to 
regulate de novo cholesterol synthesis and uptake of plasma lipoproteins44. We also recovered the nuclear 
receptor signaling genes FXR and RXR, which regulate cholesterol homeostasis via absorption, remodeling, 
transport, and synthesis and are known to convert cholesterol to bile acids45,46.  

We compared CONVERGE to fgwas and LD Score for their ability to predict established total cholesterol 
regulators. Both fgwas and LD Score captured liver as the most significant trait tissue (Supplementary Figures 
7-8), again confirming we successfully ran their pipelines. In terms of trait regulators, fgwas only identified 
POLR2A and E2F1, while LD Score predicted 14 regulators (CREB3, EHF, ELF4, ESR2, EVX2, GRHL1, RF7, 
KLF16, KLF7, MNT, NFYA, PTEN, SMAD4, SRF), of which two of them are established TC regulators (ESR2, 
GRHL1) (Fig. 4b). Both LD Score and CONVERGE recovered a similar proportion of established TC regulators 
(~16%) (Fig. 4b), though CONVERGE predicts more total regulators. Only ESR2 was predicted by both 
CONVERGE and LD Score, again demonstrating their complementary predictions. We again repeated our 
CONVERGE analysis testing multiple LD thresholds, and found our predicted regulators were also consistent 
across multiple LD thresholds, albeit with a narrower range than seen with T2D (Supplementary Fig. 10). 

To characterize the novel total cholesterol regulators not yet reported in the literature, we next gauged the 
specificity of the total cholesterol regulators relative to global regulators of liver using two metrics: regulator z-
score (measuring relative enrichment of trait regulatory regions in a regulator’s targets) and regulator network 
rank (relative number of times a regulator is expected to be selected as a trait regulator by chance – see 
Methods). TC regulators are specific to regulatory regions tagged by GWAS loci (z-score IQR is 0.96-3.5, Fig. 
4c). Furthermore, while most TC regulators are not hubs of the liver network, they are important regulators in 
liver (network rank IQR is 0.67-0.93, Fig. 4d). Taken together, these two observations suggest that TC GWAS 
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regulatory regions are concentrated in a liver subnetwork defined by the colocalization of trait regulators, and 
are not simply being connected by hub regulators in the liver network.  

Surprisingly, a handful of TC regulators are characterized by high regulator z-scores but low network rank, 
including KLF14, GLI2, and ESR2. Variants upstream of KLF14 have been consistently associated with HDL 
cholesterol levels and type 2 diabetes28,47, and in adipose tissue, proximal variants act as a cis-eQTL to KLF14 
and have a master trans-effect on genes implicated in metabolic traits48. KLF14 is dysregulated in the liver of 
dyslipidemia mice, and evidence points to KLF14 regulation of plasma HDL levels49. Also, therapeutic 
treatment of mice increased HDL levels via KLF14-mediated mechanism49. GLI2 is one of the flanking genes of 
a genome-wide significant total cholesterol SNP, despite the fact that CONVERGE did not use this information 
when inferring GLI2. Furthermore, the Gli family of transcriptional regulators are a key component of the 
Hedgehog (Hh) signaling pathway, and while cholesterol modification of Hh ligands is critical for signal 
transduction in Hh, recently Hh signaling has been implicated in cholesterol metabolism itself50. ESR2 is 
already an established regulator of total cholesterol, and our network uncovers its unusually high specificity to 
this phenotype. 

Results: Novel predicted loci harbor new GWAS variants 

In addition to identifying the trait pathway, CONVERGE prioritizes the remaining regulatory regions in the 
genome (not tagged by GWAS variants) with respect to how strongly they are bound by GWAS trait regulators. 
We expect that if CONVERGE inference of trait regulators is accurate, regulatory regions highly prioritized but 
not proximal to GWAS variants would harbor novel GWAS variants and be proximal to new trait genes. To test 
this hypothesis, first, we trained CONVERGE using historical GWAS of total cholesterol, HDL and LDL 
cholesterol, as summary statistics of these traits were available from multiple time points, and the adult liver 
tissue was a statistically significant trait-tissue for all traits from all time points. We prioritized regulatory regions 
genome-wide using the historical data, and found we had some power to predict the locations of novel 
genome-wide significant loci identified in more recent studies for all three traits (Fig. 5a). This validation 
approach was limited by the small number of traits for which powerful GWAS were conducted both historically 
and recently, so we also tested whether we could predict locations of suggestive GWAS loci (5x10-8 < P < 
5x10-6) found in the same study used to train CONVERGE. We found that the most highly prioritized regulatory 
regions identified by CONVERGE were also significantly enriched for suggestive GWAS loci for T2D, total 
cholesterol and LDL cholesterol (Fig. 5b). Our model therefore accurately prioritizes additional loci that are 
involved in the complex trait, suggesting that inference of both the trait regulators and the genomic network is 
accurate. Using the priority values of the suggestive GWAS loci, we conservatively identified a median of 247 
novel trait regulatory regions (not tagged by any GWAS locus), which is 4.5 times as many regulatory regions 
as is currently tagged by genome-wide significant loci (Supplementary Fig. 11). This suggests there are many 
genomic locations that may still harbor un-detected variants associated with these complex traits.  

We further investigated the top prioritized novel loci for both type 2 diabetes (Fig. 6a) and total cholesterol (Fig. 
6c) when CONVERGE is trained with the most recent data available. The top ranked novel locus for T2D is 
located in the 3q region upstream of both the STAG1 and TMEM22 transcription start sites, and is further 
supported by external evidence of DNase hypersensitivity (Fig. 6b). The genes in this locus have been 
previously implicated in diabetes nephropathy by a GWAS SNP rs1866813 (Fig. 6b)51 downstream of the 
neighboring IL20RB gene. The second most highly prioritized locus is a regulatory region located in the first 
intron of DR1, which is a TBP-associated repressor proposed to be under insulin control and up-regulated 
under loss of insulin action, and even further upregulated when diabetes is induced after loss of insulin52. 
Finally, CONVERGE identified an intergenic enhancer 4.4kb upstream of the lipoprotein lipase (LPL) gene as 
the fourth most prioritized region. LPL facilitates the removal of triglyceride-rich proteins from the bloodstream, 
and its dysregulation in diabetes contributes to the dyslipidemia of T2D53.  
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For total cholesterol, a predicted enhancer intronic to the gene FOG1 (Friend of GATA-1) was the most highly 
prioritized (Fig. 6d). FOG proteins are co-factors of GATA, and in the context of lipid regulation, FOG proteins 
as well as GATAs are implicated in adipogenesis54 and lipid metabolism55. CONVERGE also independently 
identified the same liver regulatory regions at the FATP5 (Fatty Acid Transport Protein 5) and HMGB1 loci, for 
both total cholesterol and LDL cholesterol. The primary role of FATP5 is in uptake of long-chain fatty acids, and 
is critical to liver lipid homeostasis56,57 , while HMGB1 is a nuclear transcriptional regulator that plays a critical 
role in the liver inflammation response to elevated free cholesterol levels58.  

Discussion 

CONVERGE is the first method to identify regulators whose binding sites co-localize with GWAS loci but do not 
necessarily directly overlap them. This is in contrast to GWAS fine-mapping methods that search for regulators 
whose binding sites directly overlap causal variants. We therefore expect CONVERGE to identify 
complementary sets of trait regulators. This was evident in our results, as CONVERGE was the only method 
able to make statistically significant regulator predictions for T2D, and there was little to no overlap of 
predictions between CONVERGE and other methods for total cholesterol, although the fraction of recovered 
established regulators were similar. We therefore envision geneticists using a combined approach involving 
both CONVERGE and fine-mapping methods to make mechanistic inferences. 

In our type 2 diabetes experiments, all three tested methods (CONVERGE, LD Score, fgwas) were unable to 
recover the two factors previously reported as globally enriched in T2D GWAS loci (FOXA1/2, RFX). First, we 
note that FOXA1/2 is a promiscuous factor in our pancreatic islet genomic network – it is in the top 5% of 
regulators with respect to number of regulatory regions bound. Because CONVERGE identifies trait regulators 
as those that preferentially bind to GWAS loci compared to the remainder of the epigenome, such prolific TFs 
will be biased against by design. We reasoned that so-called hubs in the genomic network are likely to have 
non-specific effects on GWAS traits and are therefore of less interest. Second, the previous studies used TF 
ChIP-seq peaks called specifically in islet cells to identify the FOXA1/2 and RFX enrichment, while our TF-
regulatory region links were defined only using in silico TFBS predictions. We did not use ChIP-seq peaks to 
define our regulator-regulatory region links because ChIP-seq peaks are cell type-specific, and have only been 
systematically collected for many TFs in a few select cell lines59.  

CONVERGE shares some similarity with gene network prioritization methods that use the guilt-by-association 
principle to identify genes that interact with GWAS genes to shed light on the underlying trait pathways60–63. 
What distinguishes CONVERGE (and the fine mapping methods we compare it to here) from the gene centric 
network methods is that gene network-based approaches rely on pre-determined assignments of GWAS 
variants to target genes, even though more than 88% of GWAS variants do not tag coding variants. While 
these GWAS variants are enriched in regulatory regions, each GWAS variant can tag as many as 49 different 
regulatory regions, and approximately 60% of regulatory regions are estimated to target a non-nearest gene64, 
making identification of the causal variant (and therefore the target GWAS genes) challenging. CONVERGE 
avoids the task of assigning variants to genes by instead hypothesizing GWAS variants may be connected 
through the regulatory regions they disrupt, and thus the guilt-by-association occurs through the regulator 
nodes of the genomic network (as opposed to directly via gene-gene interactions). CONVERGE uses 
epigenomic maps to construct novel regulatory region-centric networks where nodes consist of variants, 
regulatory regions and TF regulators, thus generalizing the gene centric network to include the notion of non-
coding regulatory regions. 

Inference of the regulatory architecture of complex traits using multiple loci affords new insight on several 
fronts. In our study, we found 53% of regulatory GWAS variants tag regulatory regions in more than one cell 
type, making their mechanism ambiguous and leaving it unclear whether these variants act in multiple cell 
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types or a single one. Our analysis reveals that for traits such as LDL cholesterol levels, we are able to assign 
these ambiguous GWAS variants to a single specific cell type based on regulatory similarity to GWAS variants 
that are unambiguously assigned to a cell type. This indicates at least several of these ambiguous GWAS 
variants target trait pathways within a single trait tissue. However, CONVERGE currently only assigns 
approximately 16% of GWAS variants to a clear trait pathway within an individual trait tissue. We expect to 
discover more subtle trait pathways by iteratively applying our framework after removing the previously 
detected trait pathway and variants before reapplication of CONVERGE. 

One of the outstanding challenges of GWAS is to estimate how many loci remain to be discovered and to 
characterize them, and CONVERGE analysis identified two types of regions likely to harbor undiscovered 
variants. First, we conservatively estimated a median of 4.4 times more loci relative to the number of current 
genome-wide significant loci, by identifying regulatory regions distal to GWAS loci but are predicted to be 
strongly bound by GWAS trait regulators. Our estimate is likely a lower bound on the true number of additional 
loci, as our framework can only identify common trait pathways targeted by GWAS variants in the input set. 
Second, both coding and non-coding variants proximal to the trait regulators themselves may harbor additional 
rare or private GWAS variants (though CONVERGE does not explicitly look for these), as was the case for 
KLF14 and GLI2 for total cholesterol.  

Our study focused on the analysis of two traits, type 2 diabetes and total cholesterol, for a number of practical 
reasons. For type 2 diabetes, the detected trait pathway is small and limited to a single trait tissue (pancreatic 
islets), enabling exhaustive testing of all predicted trait and control regulators. Also, both traits are well studied 
in the literature, providing another way to validate predictions. We note that overall, CONVERGE detects 
statistically significant pathways for four out of 14 GWAS studies that we tested (Fig. 2). We envision four 
approaches to improving CONVERGE sensitivity. First, transfer learning can be employed for traits whose trait 
tissues have multiple related genomic networks available. While CONVERGE currently identifies trait pathways 
in each genomic network separately, if multiple related genomic networks are available (e.g. for immune cells 
in the case of autoimmune disorders), CONVERGE can be trivially modified to identify regulators that 
maximize the likelihood of the GWAS data across all related genomic networks simultaneously. This will 
ensure the selected trait regulators are robust to small perturbations in the genomic networks, and improve 
power to detect trait regulators. Second, we used a stringent Bonferroni correction factor for identifying trait 
tissues (Fig. 2a) that treats each of the genomic networks independently, although for example immune cells 
are heavily overrepresented in the 127 genomic networks. Grouping these genomic networks into tissue 
groups and applying a more relaxed significance criterion will increase the number of trait tissues (and 
therefore trait pathways) identified. Third, because CONVERGE relies on identifying shared regulatory signals 
between GWAS loci, its ability to identify trait pathways is directly related to the number of GWAS loci identified 
that are regulatory in nature. As the size of the GWAS cohorts increases and the statistical models for 
identifying GWAS loci improves, we expect CONVERGE to gain more power to detect trait pathways in the 
years to come. Fourth, the 127 genomic networks do not cover all the possible trait tissues. Inference of more 
genomic networks using other data types as they become more available, e.g. ATAC-Seq, will allow detection 
of additional trait pathways. 

A limitation of our approach to constructing genomic networks is the prediction of TF binding to regulatory 
regions via combining position weight matrix (PWM) scanning with epigenomic annotations, instead of directly 
using cell type specific TF ChIP-seq datasets, which are comparatively rare but more accurate than PWM 
scanning. Multiple TFs, particularly from the same family, may share similar binding preferences, and therefore 
some regulator nodes are not strictly identifiable. First, despite this limitation, we have shown via systematic 
knockdown of all predicted regulators as well as controls, that CONVERGE is still able to identify bona fide 
T2D regulators. Second, DNA binding domains with similar protein sequence also tend to share DNA 
sequence preferences, providing a means for deconvoluting which set of TFs is represented by each 
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ambiguous regulator node, that can then further be deconvoluted if TF expression data is available65. Third, the 
prioritization of regulatory regions (both within GWAS loci and outside) does not depend on the identity of the 
regulator nodes – for example, regulator nodes could also represent de novo motifs that have not been 
matched to known TFs but nonetheless are useful for connecting regulatory regions bound by a common 
unknown TF. Finally, regulator-regulatory region connections in the genomic networks can be refined using 
e.g. ChIP-Seq peaks of known transcription factors such as those used to validate our genomic networks. 
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Description of Supplemental Data 

Supplemental Data includes 15 supplementary figures, two supplementary tables, and supplementary 
methods. 
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Web Resources 

Code availability. All data and code will be released on GitHub (https://github.com/gquon) upon publication, 
and can be found online currently at http://people.csail.mit.edu/geraldquon/CONVERGE_all.zip. 

Data availability. Publicly available summary statistics used in this study are available here: 
https://ucdavis.box.com/s/7s9wldqk7ikj7hhlilaas5f8e9gol464, and will be released on GitHub as well upon 
publication.  
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Figure Titles and Legends 

 

 

Figure 1: Finding GWAS trait pathways by leveraging genomic networks. (a) Structure of a genomic 
network (GN). GNs are three layer networks consisting of regulators, regulatory regions and GWAS variants. 
One regulator node is created for each of 659 transcriptional regulators (blue nodes) for which a position 
weight matrix is available, one variant node is created for each GWAS locus identified by the study (large red 
nodes), and one regulatory region node is created for every enhancer and promoter (orange rectangles) 
identified within a cell type by the Roadmap Epigenomics Consortium. Variant nodes are connected to 
regulatory regions they either directly overlap on the genome, or overlap through another variant (small red 
circles) by linkage disequilibrium (R2>0.8). Regulatory regions are linked to their upstream regulators through 
motif occurrences within the regulatory region sequence. (b) The adult liver genomic network centered on 
the CYP7A1 total cholesterol-associated locus. Shown is the CYP7A1 locus associated with total 
cholesterol (lead variant rs4738684, P=1.12 x 10-23). rs4738684 tags six separate enhancers, of which 
CONVERGE selects the single regulatory region (solid black line) that is bound by the regulator COUP-TFII 
whose binding sites are also found at other GWAS loci. The predicted target enhancer also overlaps another 
variant (rs2326077, P=1.12 x 10-23) in LD and which demonstrates equally strong association as the lead 
variant, even though association strength was not used as input to the model. COUP-TFII regulation of 
CYP7A1 is a previously reported regulatory interaction in the literature.  
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Figure 2: Identification of GWAS trait pathways within targeted cell types. (a) Identification of trait 
tissues of GWAS variants. GWAS trait tissues (row) for each GWAS (column) were identified through 
permutation testing and are indicated by the orange squares. The orange shading is proportional to the 
statistical significance (after Bonferroni correction of P-values calculated from permutation testing) of the 
enrichment. Only P-values smaller than 0.01 are shaded. Cell types (rows) are colored based on their cell type 
and tissue of origin22. (b) GWAS variants target distinct trait pathways in different trait tissues. For each 
trait tissue of each GWAS identified in (a), we applied CONVERGE to detect GWAS trait pathways, and used 
permutation testing to identify statistically significant pathways. Each heatmap indicates a GWAS trait for which 
at least one significant pathway was found, and each row represents a trait tissue in which a pathway was 
found, where individual columns represent single GWAS variants. GWAS variants are partitioned into three 
categories: variants which did not tag any regulatory region in that cell type and therefore are assumed to not 
participate in the trait pathway in that cell type (white); variants which did tag at least one regulatory region but 
were not bound with high specificity to the trait regulators and therefore are predicted to not be in the trait 
pathway (light green); and variants that did tag at least one regulatory region and were bound with high 
specificity to the trait regulators, and therefore were inferred to be part of the pathway (dark green). For 
cholesterol traits, only enrichments for the newer study (2013) are shown.  
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Figure 3: Inferring the regulatory architecture of complex traits using CONVERGE. (a) Expectation 
maximization (EM) algorithm for learning CONVERGE. Initialization: We first randomly select a set of trait 
regulators (blue circles) and target regulatory region for each GWAS SNP (solid orange squares). Dashed 
orange lines indicate regulatory regions tagged by a GWAS SNP, but not selected as the target regulatory 
region. E-Step: We update the target GWAS regulatory regions for each GWAS SNP by selecting the 
regulatory region within each locus that is most strongly bound to the current set of trait regulators. M-step: We 
update the selected trait regulators based on which regulators most preferentially bind (and distinguish) GWAS 
target regulatory regions from the remaining regulatory regions in the trait tissue.  (b) Network of regulators 
and target regulatory regions identified in pancreatic islets for type 2 diabetes. We applied CONVERGE 
to identify trait regulators (blue circles) and GWAS target regulatory regions (orange squares) for type 2 
diabetes in the context of the pancreatic islet network. White squares indicate regulatory regions that were not 
identified as trait regulatory regions. Regulators are grouped according to similarity with respect to bound 
regulatory regions in the pancreatic islet network (before GWAS analysis), and edges are colored based on 
regulator group. Target regulatory regions are labeled by their coordinates. Regulatory regions tagged by the 
same GWAS variant (outer arcs) are grouped together and labeled with the name of the lead GWAS variant 
and flanking genes. A star indicates an established T2D regulator. Note the regulatory regions not tagged by 
GWAS loci act as background and are also used to identify regulators but are not shown here. (c) siRNA-
based knockdown of predicted type 2 diabetes regulators yields T2D-consistent phenotype. All six 
predicted T2D regulators were knocked down (orange boxplots), as well as six control regulators (blue 
boxplots) selected based on permutation testing. Loss in glucose-stimulated insulin secretion relative to 
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unstimulated secretion is consistent with etiological hallmarks of type 2 diabetes. Stars indicate statistical 
significance compared to siNT (two-sided Wilcox rank sum test; one star, P < 0.05; two stars, P < 0.01; three 
stars, P < 0.001). (d) Performance of CONVERGE, fgwas and LD Score at recovering established or 
validated regulators of T2D. Columns indicate the number of predicted regulators made by each method. 
Fgwas and LD Score were run using two different sets of TF-SNP annotations, either those used for 
CONVERGE (Set 1), or those provided by another group14 (Set 2). Bar color indicates the number of predicted 
regulators that were either experimentally validated or are established regulators in the literature.  
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Figure 4: Inferring the regulatory architecture and regulator specificity of the total cholesterol pathway 
in liver using CONVERGE. (a) The total cholesterol pathway in liver. The total cholesterol liver network is 
drawn similarly to Figure 3b. (b) Performance of CONVERGE, fgwas and LD Score at recovering known 
regulators of total cholesterol. Columns indicate the number of predicted regulators made by each method. 
Fgwas and LD Score were run using two different sets of TF-SNP annotations, either those used for 
CONVERGE (Set 1), or those provided by another group14 (Set 2). Bar color indicates the number of predicted 
regulators that are established regulators in the literature. (c) Total cholesterol regulators ordered by z-
score weight. Regulator weights 𝛼 learned by CONVERGE using the adult liver network are scaled by the 
mean and standard deviation of their corresponding weights learned by CONVERGE on the 500 permuted liver 
networks. Higher z-scores indicate higher specificity with respect to total cholesterol regulatory regions. IQR: 
inter-quartile range (range of the center 50% of z-scores). (d) Network rank of total cholesterol regulators. 
Network rank is calculated as the relative number of times a regulator was selected as a trait regulator under 
the same permutation testing as in (a). Higher network rank indicates that a regulator is likely to be a hub in the 
network, and therefore less specific to TC. Regulators are in the same order as (a). 
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Figure 5: Validation of predicted novel trait regulatory regions. (a) Prediction of novel GWAS regulatory 
regions identified in recent GWAS not used to train CONVERGE. Both AUPR and AUROC are separate 
measures of prediction accuracy, where larger numbers indicate better prediction. The red open circles 
represent predictive accuracy using the real liver network, and the boxplots indicate the predictive performance 
when the liver network was permuted (see Methods). Stars indicate statistical significance compared to 500 
permutations (empirical P-values; one star, P < 0.05; two stars, P < 0.01; three stars, P < 0.002, the smallest 
achievable).  (b) Prediction of suggestive GWAS regulatory regions. For all GWAS and trait tissues for 
which statistically significant pathways were found, we measured CONVERGE accuracy when predicting 
regulatory regions tagged by suggestive GWAS loci (5x10-8 < P < 5x10-6) that were not used to train 
CONVERGE. We only report AUPR here because we expect only a small subset of suggestive loci to be true 
positive GWAS loci, an assumption better reflected by AUPR performance. 
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Figure 6: Prioritized regulatory regions are proximal to genes also implicated in similar complex traits. 
(a) Prioritization of pancreatic islet regulatory regions using type 2 diabetes GWAS variants. Manhattan-
like plot indicates the relative prioritization for all regulatory regions in the pancreatic islet network, based on 
training CONVERGE using T2D GWAS variants. Green circles represent regions tagged by any suggestive 
GWAS SNP (5x10-8 < P < 5x10-6). Top prioritized regions are labeled with the nearest flanking genes. (b) The 
top prioritized regulatory region for T2D is proximal to a diabetic nephropathy variant. The top prioritized 
regulatory region for T2D sits upstream of the transcription start sites of a cluster of genes (STAG1, TMEM22, 
NCK1, IL20RB). This regulatory region is defined by the strongest H3K4me1 peak in the region, and is 
supported by separate DNase hypersensitivity data from a range of cell types collected by the ENCODE 
consortium. The regulatory region is also proximal to rs1866813, a variant associated with diabetic 
nephropathy. (c) Prioritization of adult liver regulatory regions using total cholesterol GWAS variants. 
Figure is in the same style as (a). (d) The top prioritized region for total cholesterol is located in an intron 
of a candidate TC regulator. This element is supported by both H3K27ac and H3K4me1 marks. FOG1 is a 
co-factor of GATA4, one of the regulators of lipid metabolism among other functions. 
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