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Abstract 

Discovery of cancer drivers has traditionally focused on the identification of protein-

coding genes. Here we present a comprehensive analysis of putative cancer driver 

mutations in both protein-coding and non-coding genomic regions across >2,500 

whole cancer genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) 

Consortium. We developed a statistically rigorous strategy for combining significance 

levels from multiple driver discovery methods and demonstrate that the integrated 

results overcome limitations of individual methods. We combined this strategy with 

careful filtering and applied it to protein-coding genes, promoters, untranslated 

regions (UTRs), distal enhancers and non-coding RNAs. These analyses redefine the 
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landscape of non-coding driver mutations in cancer genomes, confirming a few 

previously reported elements and raising doubts about others, while identifying novel 

candidate elements across 27 cancer types. Novel recurrent events were found in the 

promoters or 5’UTRs of TP53, RFTN1, RNF34, and MTG2, in the 3’UTRs of NFKBIZ and 

TOB1, and in the non-coding RNA RMRP. We provide evidence that the previously 

reported non-coding RNAs NEAT1 and MALAT1 may be subject to a localized 

mutational process. Perhaps the most striking finding is the relative paucity of point 

mutations driving cancer in non-coding genes and regulatory elements. Though we 

have limited power to discover infrequent non-coding drivers in individual cohorts, 

combined analysis of promoters of known cancer genes show little excess of 

mutations beyond TERT. 

 

 

Introduction 

Discovery of cancer drivers has traditionally focused on the identification of  

recurrently mutated protein-coding genes. Large-scale projects such as The Cancer 

Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have 

profiled the genomes of a number of different cancer types to date, leading to the discovery 

of many putative cancer genes. Whole-genome sequencing (WGS) has made it possible to 

systematically survey non-coding regions for potential driver events. Recent studies of 

single-nucleotide variants (SNVs) and insertions/deletions (indels) detected from WGS data 

from smaller cohorts of patients have revealed putative candidates for regulatory driver 

events1–8. However, to date, only a few events have been functionally validated as regulatory 

drivers, affecting expression of one or more target genes by changing their regulation, RNA 

stability or disruption of normal genome topology6,9–12. Non-coding RNAs play diverse 

regulatory roles and are enzymatically involved in key steps of transcription and protein 

synthesis. Though functional evidence for non-coding RNAs in cancer is accumulating13,14, 

only few examples have been shown to be the target of recurrent mutation15,16. In contrast to 

protein-coding regions, the lower coverage and complexity of DNA sequence in these non-

coding regions pose additional challenges for high-quality mutation calling, mutation rate 

estimation and identification of driver events. Adequate statistical methods that address 

these issues are needed to identify non-coding drivers from these data. 

 

The ICGC and TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) effort, which has 

collected and systematically analyzed >2,700 cancer genome sequences from >2,500 

patients representing a variety of cancer types17, offers an unprecedented opportunity to 

perform a comprehensive analysis of putative coding and non-coding driver events. Here, 
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we describe results from multiple methods for detecting such drivers based on somatic 

SNVs and indels and a framework for integrating them. Using this approach, we identify 

significantly mutated genomic elements of various types in individual cancer types and 

across cancer types. We then use additional sources of information to remove from the initial 

list of significant elements those likely to result from mapping issues caused by repetitive 

regions or by inaccurate estimation of the local background mutation rate, and classify 

recurrently mutated elements as putative cancer-drivers or as likely false positives. Finally, 

we estimate our power to discover novel drivers in the PCAWG data set and evaluate the 

overall density of non-coding regulatory driver mutations around known cancer genes. 

 

Overview of recurrent mutations across cancer types 

Many protein-coding driver mutations and the two well-studied TERT promoter mutations 

occur in frequently mutated single base genomic “hotspots”. In order to obtain an initial view 

of these in the PCAWG data set, we generated a genome-wide list of highly mutated 

hotspots by ranking all sites in the genome based on the number of cancers that harbor 

somatic mutations in them. Only 12 genomic sites were recurrently somatically mutated in 

more than 1% (26) of cancers and 106 in more than 0.5%, while the vast majority (93.19%) 

of somatic mutations were private to a single patient’s cancer (Methods; Extended Data 

Fig. 1). Interestingly, although protein-coding regions span only ~1% of the genome, 15 

(30%) of the 50 most frequently mutated sites were known amino acid altering hotspots in 

known cancer genes (in KRAS, BRAF, PIK3CA, TP53, and IDH1) (Fig. 1a). Also among the 

top hits were the two TERT promoter hotspots. The top 50 list further contained a high 

proportion of mutations almost exclusively contributed by lymphoid malignancies (Lymph-

BNHL and Lymph-CLL) (18 hotspots) and melanomas (6). The melanoma-specific hotspots 

were located in regions occupied by transcription factors (5/6 in promoters), a phenomenon 

that has recently been attributed to reduced nucleotide excision repair (NER) of UV-induced 

DNA damage17–19. Indeed, signature analysis of the melanoma hotspot mutations attributed 

them to UV radiation (Fig. 1b). The hotspots in lymphoid malignancies reside in the IGH 

locus on chromosome 14, a known phenomenon in B-cell-derived cancers where IGH has 

undergone somatic hypermutation by the activation-induced cytosine deaminase (AID), an 

observation confirmed by mutational signature analysis (Fig. 1b). Hotspots in an intron of 

GPR126 and in the promoter of PLEKHS13,20 were located inside palindromic DNA that may 

fold into hairpin structures and expose single-stranded DNA loops to APOBEC enzymes3; 

accordingly, these mutations had high APOBEC signature probabilities. The six remaining 

non-coding hotspots could be attributed to a combination of mutational processes and 

presumed technical artifacts (Supplementary Note). In contrast to these non-coding and 

cancer-specific sites, mutations in protein-coding hotspots were attributed to the aging 
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signatures, or to a mixture of signatures. Our observation that, with the exception of the 

TERT promoter hotspots, all of the top non-coding hotspots are generated by highly 

localized, cancer-specific mutational processes suggests that these may be passengers.  

 

Next, we sought to systematically identify genomic elements that drive cancer by 

comprehensively analyzing SNVs and indels in transcribed and regulatory genomic 

elements, including protein-coding genes, promoters, 5’UTRs, 3’UTRs, splice sites, distal 

regulatory elements/enhancers, lncRNA genes, short ncRNAs, and miRNAs (in total ~4% of 

the genome) (Methods; Fig. 1c; Extended Data Fig. 2; Supplementary Table 1). Drivers 

can be common across many cancer types (such as TP53, PIK3CA, PTEN, and TERT 

promoter) or highly specific (e.g. CIC and FUBP1 in oligodendroglioma, BCR-ABL in chronic 

myelogenous leukemia, and FOXA1 in breast and prostate cancers). Analysis of large mixed 

tumor cohorts increases the power to discover common drivers but dilutes the signal from 

cancer-specific ones. In order to maximize our ability to detect common and cancer-specific 

drivers, we performed analyses of individual tumor types, tumors grouped by their tissue of 

origin or organ site (“meta-cohorts”), as well as a pan-cancer set (Fig. 1d; Methods). This 

aggregation of tumors by tissue or organ site further allowed us to take advantage of 

patients from cohorts too small to analyze individually (<20 patients). Overall, we analyzed 

2,583 unique patient samples in 27 individual tumor types and 15 meta-cohorts. 

 

Discovery of driver elements 

In order to identify bona fide drivers in each cohort, we collected and integrated results from 

multiple driver discovery methods. These methods identify statistically significant elements 

based on SNVs and indels and evidence from one or more of three criteria: (i) mutational 

burden, (ii) functional impact of mutation changes, and (iii) clustering of mutation sites in 

hotspots (Fig. 2a; Methods; Supplementary Table 2). Generally, mutational burden and 

clustering of events are independent of the type of genomic element that is tested for 

significance. The ability to use measures of functional impact, however, may vary greatly 

depending on the element type. In protein-coding genes, functional impact is assessed 

through the amino acid change introduced by a given mutation. For some non-coding 

elements, the impact of mutations on transcription factor binding sites, miRNA binding sites, 

or functional RNA structure may be predicted. However, in general, the exact consequences 

of somatic mutations are harder to assess in non-coding regions than in protein-coding 

regions, and may even vary substantially across cell types.  

 

Integration of results from multiple driver discovery methods 
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Most cancer genomic studies to date have employed a single method to identify putative 

cancer driver elements. This can introduce biases because the number and type of drivers 

detected by individual methods depends on their underlying assumptions and statistical 

model. To reach a comprehensive consensus list of candidate drivers, we collected the p-

values calculated by up to 16 driver discovery methods for each genomic element 

(Supplementary Table 2, 3) and derived a general strategy to integrate them (Fig. 2a). Our 

strategy accounts for the correlation of p-values among driver discovery methods that use 

similar approaches (burden, clustering, functional impact) when applied to the same data, 

while accumulating the independent evidence provided by different methods (Fig. 2b). To 

integrate potentially correlated statistical results, we used Brown’s method for combining p-

values21, an extension of the popular Fisher’s method22 (Fig. 2c). We first used simulated 

data sets that preserve local mutation rates and signatures but do not contain drivers, to 

assess the specificity of each method and the correlation structure among different methods 

when no genomic element is expected to have a significant excess or pattern of mutations 

(Methods; Extended Data Fig. 3). As anticipated, p-values were correlated among methods 

that share similar approaches. We then used the resulting correlation structure to integrate 

p-values from the observed (real) mutation data from different methods into a single p-value 

for each genomic element. Since simulated data sets are based on assumptions, we tested 

whether we can directly estimate the correlation structure from p-values calculated on the 

observed data. As this simpler approach yielded analogous results, it was used throughout 

this study (Methods, Extended Data Fig. 3). After additional filtering steps (see below), we 

conservatively controlled for multiple hypothesis testing using the Benjamini-Hochberg 

procedure (BH)23 across the 27 individual and 15 meta-cohorts, for each element type 

separately (Fig. 2e). Cohort-element combinations (hits) with q<0.1 (10% false discovery 

rate [FDR]) were considered significant. Overall, the union of all hits from the individual 

driver discovery methods contained 3,048 cohort-element pairs involving 1,694 unique 

elements, whereas the integrated results contained 1,406 significant hits with 635 unique 

elements (Supplementary Table 4, 5).  

 

Flagging and removal of potential false positive hits 

Even after careful variant calling, false positive identification of driver loci can arise from 

residual inaccuracies in background models, residual sequencing and mapping artifacts or 

from local increases in the burden of mutations generated by as-yet unmodeled mutational 

processes. To minimize technical issues, we carefully reviewed and filtered all candidate 

driver elements based on low-confidence mappability regions and site-specific noise in a 

panel of normal samples from PCAWG (Fig. 2d; Fig. 3a,b; Methods). For example, the 

lncRNA RN7SK is a small nuclear RNA with many homologous regions in the genome, 
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making it prone to read mapping errors (Fig. 3a), while a fraction of LEPROTL1 mutations 

fell in positions flagged by the site-specific noise filter (Fig. 3b).  

 

In addition, mutational processes not properly captured by current background models can 

cause local accumulation of mutations. As shown in the hotspot analysis above, events in 

the promoters of PIM1 and RPL13A are strongly associated with the AID and UV mutational 

processes, respectively, as previously noted18,19,24 (Fig. 3c). Moreover, DNA palindromes 

may form hairpin structures that expose loop bases to APOBEC enzymes, as has been 

proposed for PLEKHS1, GPR126, TBC1D12 and LEPROTL12,3 (Fig. 3d). Non-coding RNAs 

that form secondary structures often contain palindromic sequences, which could be 

preferential targets for APOBEC enzymes. However, only a small fraction of the mutations in 

structural RNAs appear to be APOBEC derived overall (4.8%) (Supplementary Note). In 

total, 569 out of 1,406 hits (element-cohort combinations with q<0.1) and 383 out of 635 

unique elements that were initially significant, were filtered out, resulting in 837 hits (Fig. 3e; 

Supplementary Tables 4, 5). Finally, multiple hypothesis correction was repeated after 

assigning a non-significant p-value (P = 1) to the filtered out hits, resulting in further removal 

of 91 candidate element-cohort combinations. 

 

Performance of the integration method 

To evaluate the sensitivity and validity of the integration approach, we compared the 

performance of individual methods and of the integration on protein-coding genes using, as 

a gold-standard, a list of 603 known recurrently-mutated cancer genes in the Cancer Gene 

Census25 (CGC v80). These analyses revealed that, typically, the integration of different 

methods outperformed individual methods, both in terms of sensitivity and specificity, 

yielding lists of significant genes that were longer and more enriched in high-confidence 

cancer genes (Extended Data Fig. 4). 

 

Discovery of recurrently mutated elements  

Our conservative integration and filtering strategy yielded 746 total hits, which include 646 

hits in 157 protein-coding genes, 30 hits in seven protein-coding promoters, 26 hits in eight 

long non-coding RNAs, 18 hits in six non-coding RNA promoters, ten hits in six 3’UTRs, six 

hits in four 5’UTRs, six hits in one enhancer, three hits in one microRNA and one hit in a 

small RNA candidate (Fig 4a; Supplementary Table 5). The number of significant elements 

varied from just one in clear-cell renal cancer to 78 in the Carcinoma meta-cohort (Fig. 4b) 

and depended strongly on cohort size (r = 0.84; P = 1.9x10-8; also see power analysis 

below), reflecting that the landscape of driver candidates, particularly in small tumor cohorts, 

is still incomplete. 
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Comparison of the p-values obtained from individual tumor types and meta-cohorts revealed 

that although most candidate drivers gained significance in larger meta-cohorts, the tumor-

type specific genes DAXX (Panc-Endocrine), BRAF (Skin-Melanoma), NRAS (Skin-

Melanoma), SPOP (Prost-AdenoCa) and hsa-mir-142 (Lymph-BNHL) scored higher in their 

respective tumor types (Extended Data Fig. 5). These results emphasize the need for 

careful tradeoff between tumor-type specificity and cohort size when searching for drivers.  

 

Protein-coding mutations. The ability to discover known protein-coding cancer genes from 

WGS data provided the opportunity to evaluate our strategy and to put non-coding driver hits 

in context (Extended Data Fig. 6). Overall, candidate coding drivers were concordant with 

previous results: of the 157 genes significant in at least one patient cohort, 64% are listed in 

the CGC and 87% are in a more comprehensive list of cancer genes 

(https://doi.org/10.1101/190330). In contrast to prior studies based on large exome 

sequencing data sets, the moderate number of patients per cancer type in this data set 

provided sufficient power to detect only the genes with the strongest signal. Indeed, when 

we relaxed the significance threshold (q<0.25) to detect hits “near significance”, we found 93 

additional hits in 62 unique genes. Half (31) of these genes were already discovered as 

significant (q<0.1) in at least one cohort in this study, and now became significant in 

additional cohorts. Of the 31 genes not previously identified by our analyses, 19% were in 

the CGC and 32% in the more comprehensive list of drivers. These results confirm that 

many cancer genes were just beyond our significance threshold and would likely have been 

discovered with larger cohorts (Supplementary Table 4).  

 

Non-coding driver candidates 

In contrast to protein-coding elements, there was far less agreement among significance 

methods when analyzing non-coding elements, and most hits were strongly supported by 

only a few methods (Extended Data Fig. 7). The limited agreement between driver 

discovery methods in non-coding elements is likely due to a weaker signal of selection and 

different underlying assumptions that imperfectly model background mutation frequencies in 

non-coding regions. Thus, in order to nominate a significant element as a candidate driver, 

we carefully reviewed the supporting evidence from the genomic data and sought additional 

evidence from PCAWG (chromosomal breakpoints, copy-number, loss-of-heterozygosity and 

expression data), cancer gene databases and the literature (Supplementary Table 6).  

 

Promoters and 5’UTRs. Due to the overlap between the downstream regions of promoters 

and 5’UTRs, we reviewed the 11 significant elements from our promoter and 5’UTR 
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analyses together, yielding several interesting candidates. Our integrated results confirmed 

that the TERT promoter is the most significantly mutated promoter in cancer, being 

significant in 8 individual tumor types and 11 meta-cohorts (Fig. 4c; Supplementary Table 

5). As previously reported, we observed significantly higher TERT transcript expression 

levels in mutated compared to non-mutated cases (Extended Data Fig. 8).  

 

Among the remaining candidates, we found recurrent mutations in the promoters of PAX5 

and RFTN1 in lymphoma. PAX5 is a known off-target of AID hypermutation24 and, indeed, 

the percentage of its mutations attributable to AID activity (46%) was just below our filtering 

threshold. Consistently, mutations in its promoter were not associated with gene expression 

changes, suggesting that these mutations may be passengers (Extended Data Fig. 8). In 

contrast, mutations in the promoter of RFTN1 were weakly associated with an increase in 

RFTN1 expression levels (P = 0.03; mutant/wild type fold difference (FD) = 1.2; P = 0.02, 

after excluding 8/21 mutations attributed to the AID signature) (Fig. 5a). The protein 

encoded by RFTN1, Raftlin, associates with B-cell receptor complexes26 but its function in 

lymphoma is unclear. 

 

Mutations called in the 5’UTR of RNF34 in Liver-HCC overlap an intronic DNAse I 

hypersensitive region in multiple cell types27, suggesting that events may affect expression 

of RNF34 or a neighboring gene through an intragenic enhancer. Indeed, expression of the 

histone demethylase KDM2B located downstream of RNF34 shows weak correlation with 

these mutations (P = 0.03; FD = 1.3; Fig 5b) with no effect on RNF34 mRNA (P = 0.41). 

Mutations in the 5’ region of MTG2 were concentrated in a hotspot and showed marginally 

significant decreased expression in the Pan-cancer (P = 0.036; FD = 0.8) and Carcinoma (P 

= 0.029; FD = 0.8) meta-cohorts (Fig. 5c; Extended Data Fig. 8). MTG2 encodes a little-

studied GTPase that associates with the mitochondrial ribosome28. HES1 promoter 

mutations were significant in Carcinoma and Pan-cancer, but showed no association with 

gene expression (Extended Data Fig. 8). HES1 is a NOTCH signalling target29, and is 

focally amplified in gastric cancers (Extended Data Fig. 9).  

 

PTDSS1, DTL (and INTS7, which shares a bidirectional promoter), IFI44L and POLR3E 

showed trends towards increased or decreased expression in mutated tumors, although the 

small number of samples prevented us from drawing definitive conclusions (Extended Data 

Fig. 8). None of these genes were present in significantly amplified or deleted focal peaks 

(Methods). Validation of these hits with additional data in further studies will be needed to 

evaluate whether they are genuine drivers. 
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As previously reported in a number of studies1,3,7, we also found recurrent mutations in the 

promoter of WDR74, which was significant in multiple cohorts. The mutations concentrate in 

a small region overlapping an evolutionarily conserved spliceosomal U2 snRNA and 

therefore potentially affect splice patterns. However, no significant associations with either 

WDR74 or transcriptome-wide splicing were seen (Supplementary Note; Methods). We 

did, however, find that the repetitive U2 sequence was frequently affected by recurrent 

artifacts in SNP databases, raising concerns about potential mapping errors for this 

repetitive RNA type (Extended Data Fig. 10). 

 

Finally, restricted hypothesis testing of the promoters of CGC genes (n = 603) revealed 

significant recurrence of mutations in the promoter region of TP53 (11 patients in the pan-

cancer cohort; q = 0.044, NBR method). Most of these mutations were substitutions and 

deletions affecting either the TSS or the donor splice site of the first non-coding exon of 

TP53. For the 6 samples with expression data, these mutations were associated with a 

dramatic reduction of expression (Fig. 5d). In 8 of the 11 mutant cases, the mutation 

occurred in combination with copy-neutral loss of heterozygosity. This is the first report of a 

relatively infrequent, but impactful, form of TP53 inactivation by non-coding mutations. 

 

Enhancers. Two enhancer regions were found significant in our integration analysis; one at 

the IGH locus in Lymph-CLL and the other near TP53TG1 in multiple cohorts. However, 

many of the recurrent mutations in the enhancer overlapping the IGH locus are due to 

characteristic somatic hypermutation; 48% of mutations in this enhancer element matched 

the AID signature, which is just below our filtering threshold. Nine of 18 mutations in the 

enhancer near TP53TG1 were contributed by esophageal cancers. However, 89% of 

mutations in these esophageal tumors were attributed to a mutational signature common in 

this cancer type (mostly T>G substitutions in NTT context), raising the concern that these 

reflect a localized mutational process rather than a driver event30 (PCAWG7 publication). 

These mutations were concentrated around a conserved region (Fig. 5e) and overlapped 

sites bound by NFIC and ZBTB7 transcription factors in HepG2 cells27. TP53TG1 is a non-

coding RNA suggested as a tumor suppressor involved in p53 response to DNA damage 

and has been reported to be epigenetically silenced in cancer31. 

 

3’UTRs. Recurrent somatic events were identified in the 3’UTRs of six genes: FOXA1 in 

prostate cancer, ALB in liver cancer, SFTPB in lung adenocarcinoma, NFKBIZ and 

TMEM107 in lymphomas, and TOB1 in Carcinoma, most of which contained a large number 

of indels (Fig. 4c). High rates of indels in the 3’UTR of ALB in liver cancer and SFTPB in 

lung cancer have been recently reported8 but it is unclear whether they are cancer drivers or 
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the result of a poorly-understood mechanism of localized indel hypermutation. To determine 

whether indels affect function and accumulate specifically in the 3’UTRs, we compared indel 

rates in 3’UTRs with other regions around these genes. Consistent with local hypermutation, 

rather than selection, we observed similar indel rates in 3’UTR and 1 kb downstream of the 

polyadenylation site in ALB, SFTPB and FOXA1 (Fig. 6a). This, together with additional 

observations presented below, strongly suggest that indel recurrence at these loci is caused 

by a novel localized hypermutation process. 

 

On the other hand, although ALB is subject to localized hypermutation, protein-coding SNVs 

in ALB are enriched in missense and truncating events relative to synonymous mutations in 

liver cancer (P = 1.5x10-7; Fig. 6b). Furthermore, the ALB locus is lost in a fraction of liver 

cases (Fig. 6b), with copy losses having a tendency to occur in samples without somatic 

mutations (Fisher’s exact test, P = 0.0099). These findings, suggest that loss of ALB may be 

a genuine driver event in liver cancer. Similarly, the well-known driver role of FOXA1 in 

prostate tumors is supported by the functional impact of coding mutations (P = 4.4x10-7) and 

focal amplifications, raising the possibility that the mutation enrichment observed in the 

3'UTR might also be functional. 

 

In contrast to the genes discussed above, the number of indels in the 3’UTRs of NFKBIZ and 

TOB1 was significantly higher than in other parts of these genes, suggesting that indels in 

the 3’UTRs could be under functional selection (Fig. 6a). TOB1 encodes an anti-proliferation 

regulator that associates with ERBB2, and also affects migration and invasion in gastric 

cancer32. As part of the CCR4-NOT complex, TOB1 regulates other mRNAs through binding 

to their 3’UTR and promoting deadenylation33. Tumors with 3’UTR mutations in TOB1 

showed a trend towards decreased expression (P = 0.053; FD = 0.7). Mutations did not 

concentrate in known miRNA binding sites, possibly due to incomplete annotation (Fig. 6c). 

However, the extreme conservation of this region (5th most conserved among all tested 

3’UTRs with an average PhyloP score of 5.6) indicates that these events likely disrupt 

functionally important sites (Fig. 6c). Interestingly, TOB1 and its neighboring gene WFIKKN2 

are focally amplified in breast cancer and pan-cancer, suggesting a complex role in cancer 

(Extended Data Fig. 9). NFKBIZ is a transcription factor that is mutated in 

recurrent/relapsed DLBCL34 and amplified in primary lymphomas34,35. 3’UTR mutations 

accumulated in a hotspot proximal to the stop codon and upstream of conserved miRNA 

binding sites which might be affected by these mutations (Fig. 6d). Only two events in these 

regions are SNVs, suggesting that mutations in the NFKBIZ 3’UTR are not the consequence 

of AID off-target activity. Lymphomas with 3’UTR mutations showed a trend towards 

increased mRNA levels of NFKBIZ (P = 0.035; FD = 3.2; the trend remains after correction 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2017. ; https://doi.org/10.1101/237313doi: bioRxiv preprint 

https://doi.org/10.1101/237313
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

for copy number, P = 0.03; Fig. 6d). Functional studies will be required to understand the 

exact function of 3’UTR mutations on transcript regulation of TOB1 and NFKBIZ. 

 

Mutations in the significant 3’UTR of TMEM107 in lymphoma overlap the U8 small RNA 

SNORD118 (Extended Data Fig. 10). Similar to WDR74, overlap with a repetitive RNA 

element suggests that these mutations might be caused by mapping artifacts. 

 

Non-coding RNAs. ncRNAs are often part of large gene families with multiple copies in the 

genome. Sequence similarity with other genomic regions may therefore complicate their 

analysis. Similarly to the U2 RNA upstream of WDR74, we observed high levels of germline 

polymorphisms in normal samples in some of the significant ncRNAs and their promoters 

(Extended Data Fig. 10). Though interesting candidates, caution should thus be exercised 

in interpreting these hits. 

 

The non-coding RNA RMRP is significantly mutated in multiple cancer types, in both its gene 

body and promoter (Fig 4c; Fig 6e; Supplementary Table 5). RMRP is the RNA 

component of the endoribonuclease RNase MRP, an enzymatically active 

ribonucleoprotein36,37,38. Its catalytic function depends on the RNA secondary and tertiary 

structure and its interactions with proteins39. Germline mutations in RMRP cause cartilage-

hair hypoplasia, and somatic promoter mutations have been reported to be functional9. In 

addition, the RMRP locus is focally amplified in several tumor types, including epithelial 

cancer (Extended Data Fig. 9c). SNVs in the gene body (7 in pan-cancer) are significantly 

biased towards secondary structure impact (P = 0.011, permutation test)40,41. Three of these 

are individually significant (each with P < 0.1, sample level permutation tests), with two 

affecting the same position and one located in a tertiary interaction site (Fig. 6e). Of the four 

gene-body indels, three are located in or near protein-binding sites (P = 0.08), including a 

deletion that is predicted to affect the secondary structure (Extended Data Fig. 9d). Given 

RMRP's role in replication of the mitochodrial genome36, we tested whether mutations in this 

locus were associated with altered mitochondrial genome copy number. Indeed, mutated 

samples showed a trend towards higher mitochondrial copy number (two-sided rank-sum 

test, P = 0.1). However, RMRP also appears to be a target of potential artifacts (Extended 

Data Fig. 10) and so its relevance to cancer requires further scrutiny. 

 

The microRNA precursor (pre-miRNA) for miR-142 was found significant in Lymph-BNHL, 

Lymphatic system and Hematopoietic system (Fig. 4c; Supplementary Table 5). The locus 

is a known AID off-target in lymphoma5,42(Extended Data Fig. 10). However, five of seven 

mutations (71%) in the dominantly expressed mature miRNA mir-142-p3, where the largest 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2017. ; https://doi.org/10.1101/237313doi: bioRxiv preprint 

https://doi.org/10.1101/237313
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

functional impact is expected, were not assigned to AID, raising the possibility that they may 

be under selection5. 

 

Eleven additional ncRNA-related elements (RNU6-573P, RPPH1, RNU12, TRAM2-AS1, 

G025135, G029190,RP11-92C4.6 and promoters of RNU12, MIR663A, RP11-440L14.1, 

and LINC00963) passed our stringent post-filtering, but had limited supporting evidence after 

manual inspection. These are discussed in a Supplementary Note. We further checked 

whether any of our non-coding candidates were associated with known germline cancer risk 

variants, and found no significant associations, with the exception of TERT (Methods). 

 

NEAT1 and MALAT1, two neighboring lncRNAs previously reported as recurrently mutated 

in liver43 and breast cancer3, were found significant in multiple cohorts (Fig. 4c), mutated in a 

large number of patients (369 for NEAT1 and 158 for MALAT1; Fig 7a). In addition, these 

genes are significantly associated with nearby chromosomal breakpoints (NEAT1: P = 

5.3x10-9; MALAT1: P = 0.0012; Methods; Extended Data Fig. 11). The pattern of 

breakpoints, indels and SNVs scattered throughout their sequence would suggest a possible 

tumor suppressor role. To evaluate this hypothesis, we tested whether MALAT1 and NEAT1 

mutations are associated to loss of heterozygosity (LOH). Neither gene showed biallelic loss, 

in contrast to many known canonical tumor suppressors (Fig. 7b; Extended Data Fig. 11). 

Mutations in MALAT1 and NEAT1 also do not exhibit higher cancer allele fractions 

compared to mutations in flanking regions, a feature of early driver mutations (Fig 7c; 

Extended Data Fig. 11). Furthermore, NEAT1 and MALAT1 mutations are not associated 

with altered expression levels, suggesting that they do not affect post-transcriptional stability 

nor show increased expression like many mutated oncogenes (Fig 7d; Extended Data Fig. 

11). 

 

The high enrichment of indels throughout the gene body of NEAT1 and MALAT1, which 

have very high expression levels across many cancer types, resembles the phenomenon 

described above for ALB and SFTPB. If these indels are generated by a specific mutational 

process, we might expect distinct features from indels found elsewhere in the genome. 

Indeed, we find that indels in NEAT1, MALAT1, ALB and SFTPB are strongly enriched in 

events longer than 1 bp and particularly in indels of length 2-5 bp, compared to the genomic 

background (least significant Fisher’s P = 6.8x10-5, for MALAT1; Fig. 7e). The association of 

these indels with highly expressed genes suggests a transcription-coupled mutagenic 

mechanism, possibly transcription-replication collisions44–46. A systematic search of genes 

with increased rates of 2-5 bp indels reveals that this yet-unknown mutational process 

affects other highly expressed genes (Extended Data Fig. 11), some of which were reported 
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in a recent study8, indicating that these indel sizes are a feature of the reported mutational 

process. Interestingly, SNVs also occur at higher frequencies in these genes, suggesting 

that they may be generated by the same mechanism, although less frequently (Fig. 7f). 

 

Overall, the discovery of a localized mutational signature and the lack of association of the 

mutations in MALAT1 and NEAT1 with loss of heterozygosity or higher allele frequencies 

suggests that indels in these genes are most likely passenger events. The previously 

reported oncogenic phenotypes associated with both ncRNAs43,47,48 may thus be related to 

other types of alterations.  

 

Localized lack of power to call mutations 

Certain genomic regions, especially those with high GC content, are subject to systematic 

low coverage in next-generation sequencing49. We used power analysis to quantify the 

number of possibly missed mutations, especially in non-coding regions. These calculations 

attempt to account for variations in local sequencing depth, purity and overall ploidy of 

individual tumor samples, background mutation rates across cohorts and elements, and the 

size of patient cohorts9,50–52. We found that mutation detection sensitivity was high across the 

element types, (median d.s. = 0.98) but slightly lower for the typically GC-rich promoters 

(median d.s. = 0.96) and 5’UTR elements (0.96; Fig. 8a; Supplementary Table 4,5). 

However, for some individual genomic regions the detection sensitivity is dramatically 

reduced and it is therefore important to evaluate it for elements of interest. For example, only 

43% of tested cases have at least 50% average detection sensitivity across the third exon of 

TCF7L2 and 20% in the 5’UTR of AKT1 (Extended Data Fig. 12a). Positional detection 

sensitivities for the two canonical TERT promoter hotspot sites were highly variable among 

patients and cohorts, ranging from 4% of sufficiently powered (≥90%) patients in CNS-

PiloAstro to 100% of patients in Thy-AdenoCa (Fig. 8b; Extended Data Fig. 12b). This 

means that we have nearly no information about possible TERT promoter mutations in CNS-

PiloAstro and incomplete information in other cohorts. Using the detection sensitivity and 

observed mutation count at the TERT hotspot sites, we inferred the expected total number of 

events in each tumor type (Fig 8c). This analysis revealed that ~216 (CI95 = [188,245]) 

TERT hotspot mutations were likely missed in this study due to lack of power. Likewise, 

about four additional mutations would be expected at the recurrent FOXA1 promoter hotspot 

shown to be mutated in hormone-receptor positive breast cancers (Extended Data Fig. 

12)9. 
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These calculations suggest that a considerable number of potentially impactful somatic 

mutations were not detected due to systematic low sequencing coverage, and that specific 

positions can be unpowered in elements with overall sufficient coverage. 

 

We further evaluated the discovery power for recurrent events identified in mutational burden 

tests in the tumor cohorts analyzed in this study9,50. As expected, discovery power was 

highest in cohorts with many patients and low background mutation densities allowing 

discovery of typical-sized driver elements mutated in fewer than 1% of patients in the 

Carcinoma, Adenocarcinoma and pan-cancer meta-cohorts with 90% power (Fig. 8d). In 

contrast, the small Bladder-TCC cohort (n=23) with relatively high background mutation 

density (~2.7 mutations/Mb) is only powered to discover drivers that occur in at least 25% of 

patients (Fig. 8d). Overall, power differences between element types for individual tumor 

cohorts were small, suggesting that lack of power alone cannot explain the observed paucity 

of regulatory driver elements.  

 

Relative paucity of non-coding driver point mutations 

To further analyze the relative paucity of driver mutations in non-coding elements, we sought 

to estimate the overall number of driver mutations, in coding and non-coding regions of 

known cancer genes. Given the limited statistical power to detect individually significant 

elements, we combined the signal from multiple elements, as recently described53. The 

difference between the total number of mutations observed across a combined set of 

elements and the number of passenger mutations that is expected by chance, i.e. the 

excess of mutations, approximates the total number of driver mutations in the set of 

elements. To estimate the expected number of background mutations, we fit the NBR model 

to presumed passenger genes, controlling for sequence composition, element size and 

regional mutation densities (Methods; Supplementary Table 7; Supplementary Note)53. 

We focused on 142 known cancer genes that include the significantly mutated cancer genes 

in this study and frequently amplified or deleted cancer genes (Methods). We specifically 

excluded TERT from this analysis because of its high frequency of promoter driver mutations 

and the incomplete detection sensitivity reported above. 

  

Overall, this approach predicted an excess of 3,133 driver mutations (CI95% [2,987-3,273]; 

2,258 SNVs and 875 indels) in the protein-coding sequences of these genes across the pan-

cancer meta-cohort (Fig. 8e). In contrast to coding regions, the observed number of 

mutations across the combined set of non-coding elements associated with these genes is 

very close to the expected number of passenger mutations, , with an excess of 71 (CI95%:22-

133) mutations in promoters, 32 (0-79) in 5’UTRs, and 103 (25-184) in 3’UTRs. These 
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results indicate that coding genes contribute the vast majority (>90%) of driver point 

mutations in these 142 cancer genes. Importantly, these estimates are conservative, since 

the estimation of the background number of mutations from putative passenger genes may 

include yet undetected driver mutations. In addition, non-coding mutations in promoters of 

cancer genes were also not generally associated with LOH nor with altered expression, as 

one would expect if they were enriched with driver mutations (Supplementary Note). 

Altogether, our results suggest that mutations in protein-coding regions dominate the 

landscape of driver point mutations in known cancer genes. 

 

Discussion 

If we are to fulfill the ambitions of precision medicine, we need a detailed understanding of 

the genetic changes that drive each person’s cancer, including those in non-coding regions 

(https://doi.org/10.1101/190330). Most cancer genomic studies have focused on protein-

coding genes, leaving non-coding regulatory regions and non-coding RNA genes largely 

unexplored. The unprecedented availability of high-quality mutation calls from whole-

genomes of >2,500 patients across 27 cancer types has enabled us to comprehensively 

search for functional elements with cancer-driver mutations across the genome. To obtain 

reliable results and avoid common pitfalls in detecting drivers54, we have benchmarked a 

large number of methods and developed a novel and rigorous statistical strategy for 

integrating their results. 

 

Among the most interesting candidate non-coding driver elements identified in this analysis, 

we have uncovered promoter or 5’UTR mutations in TP53, RFTN1 and MTG2, a putative 

intragenic regulatory element in RNF34 that possibly regulates KDM2B; 3’UTR mutations in 

NFKBIZ and TOB1; and recurrent mutations in the non-coding RNA RMRP. We have also 

found evidence suggesting that a number of previously reported and frequently mutated 

non-coding elements may not be genuine cancer drivers. Particularly, the non-coding RNAs 

NEAT1 and MALAT1 are subject to a high density of passenger indels, seemingly due to a 

transcription-associated mutational process that targets some of the most highly expressed 

genes. 

 

Our study has yielded an unexpectedly low number of non-coding driver candidates. The 

results from four analyses - genomic hotspot recurrence, driver element discovery, discovery 

power and mutational excess - suggest that the regulatory elements studied here contribute 

a much smaller number of recurrent cancer-driving mutations than protein-coding genes. 

This contrasts the distribution of germline polymorphisms associated with heritability of 

complex traits, which are most frequently located outside of protein-coding genes 55. 
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Technical shortcomings, such as severe localized lack of sequence coverage in GC-rich 

promoters (as in the case of the TERT promoter), may lead to considerable underestimation 

of true drivers in certain regions. The yield of driver events will thus benefit from technical 

improvements, including less variable sequence coverage (e.g. PCR-free library 

preparation), longer sequencing reads and advanced methods for read mapping and variant 

calling that can overcome common artifacts. Moreover, studying larger tumor cohorts will 

provide increased power to discover infrequently mutated driver elements. 

 

Our analyses have focused on currently-annotated non-coding regulatory elements and non-

coding genes, comprising 4% of the genome, and exclusively on SNVs and indels. Although 

our genome-wide hotspot analysis did not detect novel highly recurrent non-coding mutation 

sites, it is possible that additional non-coding drivers reside outside of the regions tested 

here. Improvements in the functional annotation of non-coding elements, our understanding 

of their tissue-specificity, and the impact of mutations in them, will refine current driver 

discovery models and enable more comprehensive screens. 

 

A challenge in the identification of non-coding drivers is distinguishing real novel driver 

events from yet-unidentified mutational mechanisms targeting certain genomic regions, such 

as the recently described hypermutation of transcription factor binding sites in 

melanoma56,57. Better understanding of mutational processes and their activity along the 

genome will be critical to improve the sensitivity and specificity of statistical methods for 

driver discovery.  

 

One potential explanation for the relative paucity of non-coding drivers is the smaller 

functional territory size of many regulatory elements, and hence smaller chance of being 

mutated, compared to protein-coding genes (Extended Data Fig.1; Fig. 8d). The presence 

of TERT promoter mutations at just two sites suggests that non-coding driver mutations may 

be confined to specific positions, similar to the small number of impactful sites in the 

oncogenes BRAF, KRAS and IDH1.  

 

SNVs and small indels may not easily alter the function of non-coding regulatory elements. 

Directly mutating protein-coding sequences or altering expression levels by copy number 

changes, epigenetic changes or repurposing of distal enhancers through genomic 

rearrangements58,59 may be more likely to provide large phenotypic effects. While protein-

truncating or frameshift mutations can be created by a single nucleotide change, silencing 

regulatory regions of tumor suppressors may depend on large deletions to achieve a similar 
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effect. Although the very high frequency of TERT promoter mutations in cancer 

demonstrates that some promoter point mutations can be potent driver events, our analyses 

suggest that the number of regulatory sites where a point mutation can lead to major 

phenotypic effects may be smaller than anticipated across the genome. This highlights 

TERT as an unusual example, perhaps because even a modest increase in the expression 

level of TERT may be sufficient for circumventing normal telomere shortening in cancer 

cells. 

 

Comprehensive and reliable discovery of non-coding driver mutations in cancer genomes 

will be an integral part of cancer research and precision medicine in the coming years. We 

anticipate that the approaches developed here will provide a solid foundation for the incipient 

era of driver discovery from ever-larger numbers of cancer whole-genome sequences. 
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Figure legends 

Figure 1: Mutational hotspots and overview of functional elements and meta-cohorts. 

a, Characteristics of top 50 single-site hotspots in PCAWG SNV data. The stacked bar chart 

(left) shows the total number of patients mutated across the PCAWG cohorts colored by 

mutation type. Gene names are given when hotspots overlap functional elements (colour-

coded). Known somatic driver sites are marked with a hashtag. Amino acid change is 

indicated for protein-coding genes. The genomic location (chr:position) is colored by overlap 

with center of palindromes (orange) or immunoglobulin loci (brown). The table (right) shows 

the distribution of hotspot SNVs in the PCAWG cohorts sorted by number of hotspots. 

Tumor-type specific hotspots are indicated with a box. This only includes cohorts with at 

least 20 patients, and at least 10 patients or 10% of patients with a SNV. The Lymph-BNHL 

and Lymph-CLL cohorts are shown together as Lymphoid malignancies. See Extended 

Data Fig. 1 for a complete set of individual and meta cohorts. b, Mutational signature 

attributions for mutations in each hotspot site. c, Schematic describing definition of functional 

element types from GENCODE and ENCODE annotation resources. Functional elements 

(black) are defined based on transcript annotations from various databases. Elements 

arising from multiple transcripts with the same gene ID are collapsed, as seen here for the 

protein-coding isoforms. Promoter elements are defined as 200 bases upstream and 

downstream of the transcription start sites of a gene's transcripts (marked with red). Splice 
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site elements extend 6 and 20 bases from 3' and 5' exonic ends into intronic regions 

respectively, as indicated. Regions overlapping protein-coding bases and protein-coding 

splice sites are subtracted from other regions, as indicated for the lncRNA promoter element 

in gray. d, Organization of meta-cohorts defined by tissue of origin and organ system 

(Methods). Pan-cancer contains all cancers excluding Skin-Melanoma and lymphoid 

malignancies. 

 

Figure 2: Filtering and integration process for nomination of driver candidates. a, 

Overview of driver discovery method and their lines of evidence to evaluate candidate gene 

drivers. Methods employing each feature are marked with blue boxes next to the appropriate 

track. b, Spearman’s correlation of p-values across the different driver discovery algorithms 

based on simulated (null model) mutational data. Dendrogram illustrates relatedness of 

method p-values and algorithm approaches marked by colored boxes on dendrogram 

leaves. c, P-values are combined with Brown’s method based on the correlation structure 

calculated in (b). Individual method (left) and integrated (right) log-transformed p-values are 

shown in a heatmap (grey: missing data). d, Post-filtering used several criteria to identify 

likely suspicious candidates (shaded grey rectangle). e, Significant driver candidates were 

identified after controlling for multiple hypothesis testing based on an FDR q-value threshold 

of 0.1 (blue asterisk). Candidates with q-values below 0.25 (blue dash) were also considered 

of interest. 

  

Figure 3: Technical and biological confounders used in candidate filtering. a, Read 

mappability based on alignability, uniqueness and blacklisted regions. Example shown for 

RN7SK, which was removed due to low alignability. b, Site-specific noise evaluated in 

normal samples from PCAWG. c, Increased local mutation density caused by AID and UV 

mutational processes in lymphoma and melanoma, respectively. d, Palindromic DNA can 

expose bases to APOBEC enzymes. f, Number of significant unique hits (left) and unique 

elements (right) removed by each filter. 

 

Figure 4: Protein-coding and non-coding driver elements identified in PCAWG 

cohorts. a, Number of total hits (elements significant in a certain patient cohort; left) and 

number of unique significant elements (right). b, Number of significant elements by type and 

by cohort. c, Significant non-coding elements identified in this study. Element types are 

indicated with colors as in Fig. 1c.  

 

Figure 5: Novel non-coding promoter and enhancer driver candidates. a, RFTN1 

promoter locus (left) and gene expression for mutant (mut.) and wild-type (wt) (right) in 
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Lymph-BNHL tumors. Expression values are colored by copy number status; AID mutations 

are highlighted in yellow. b, A mutational hotspot inside RNF34 overlapping a DNAse I site 

(left) correlates with gene expression changes of KDM2B in Liver-HCC (right). Coloring of 

mutations as in a. c, MTG2 promoter locus (left) and associated gene expression changes in 

Carcinoma tumors (right). Coloring of mutations as in a. d, An enhancer associated with 

TP53TG1 (Methods) (left) contains mutations mostly attributed to an esophageal cancer-

associated signature.  

 

Figure 6: Novel 3’UTR and non-coding RNA driver candidates. a, Quantification of indel 

rates for functional elements associated with significant 3’UTRs. b, Overview of ALB 

genomic locus and PCAWG variants illustrates local density of indels. Coloring of enlarged 

ALB gene elements corresponds to functional elements in barplots in a. Copy number 

changes from 314 Liver-HCC cases are compared to other samples from PCAWG. c, 

Genomic locus of TOB1 3’UTR. Note extreme conservation (PhyloP) for the 3’UTR. d, 

Genomic locus of NFKBIZ 3’UTR (left) and associated gene expression changes in Lymph-

BNHL (right). e, Genomic locus of the RMRP transcript and promoter region (left), and its 

RNA secondary structure, tertiary structure interactions, protein and substrate interactions, 

and mutations with their predicted structural impact (right; Extended Data Figure 9d); 

lymphoma and melanoma are excluded.  

 

Figure 7: Characterization of a mutational process in NEAT1 and MALAT1. a, Genomic 

locus overview showing the distribution of indels and SNVs in NEAT1 and MALAT1. b, 

Analysis of enrichment in LOH associated with mutation (“double-hit”) for canonical tumor 

suppressors (TSG), oncogenes (OG), and NEAT1/MALAT1. c, Comparison of cancer allelic 

fractions within those same genes and within flanking regions (including 2 kbp upstream, 2 

kbp downstream and introns). d, Difference in expression between mutated and wild-type 

alleles of these genes. e, Percentages of different groups of indel sizes for all protein-coding 

and lncRNA genes, ALB, NEAT1, MALAT1 and the set of genes enriched in 2-5 bp indels. f, 

SNV and indel rates (total events/bp) in different functional regions of 18 protein-coding 

genes enriched in 2-5 bps indels (without ALB, which contributed 47% of indels). Red lines 

indicate background indel and SNV rates estimated from all protein-coding genes. 

 

Figure 8: Missed mutations and paucity of non-coding drivers. a, Cumulative 

distribution of average detection sensitivity (d.s.) from 60 PCAWG pilot samples in different 

functional element types. b, Distribution of TERT promoter hotspot (chr5:1295228; hg19) 

detection sensitivity for each each patient, by cohort. Grey dots indicate values for individual 

patients inside estimated distribution (areas colored by cohort). Horizontal black bars mark 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2017. ; https://doi.org/10.1101/237313doi: bioRxiv preprint 

https://doi.org/10.1101/237313
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

the medians. Numbers above distributions indicate the percentage of patients powered (d.s. 

≥90%) in each cohort. See Extended Data Fig. 12b for the second TERT hotspot. c, 

Percentage of patients with observed (blue) and inferred missed (red) mutations at the 

chr5:1,295,228 and chr5:1,295,250 TERT promoter hotspot sites. Error bars indicate 95% 

confidence interval. Numbers above bars show the total inferred number of TERT promoter 

mutations for each site in this cohort. Red numbers indicate the absolute number of inferred 

missed mutations (due to lack of read coverage). d, Heatmap shows minimal frequency of a 

driver element in a cohort that is powered (≥90%) to be discovered. Cell numbers indicate 

the number of patients in a given cohort that would need to harbor a mutation in a given 

element. For example, the pan-cancer cohort is powered to discover a driver gene (CDS) 

present in <1% or 18 patients, while the Bladder-TCC cohort is only powered to discover 

drivers present in at least 27% or 6 patients. Power to discover driver elements is dependent 

on the background mutation frequency (shown above the heatmap) and element length 

(shown to the right). e, The ratio between observed numbers of mutations (SNVs and indels) 

in regulatory and coding regions of 142 protein-coding cancer genes. The absolute number 

of driver mutations predicted, with CI95% in brackets, is shown above each bar. 

 

Extended Data Fig. 1: Mutational hotspots in additional tumor types. a, Barplot of 

positions vs. patients. The stacked barcharts under the barplot show the proportion of 

protein-coding (dark grey) and non-coding (light grey) positions, respectively, in each of the 

bars in the barplot. b, Distribution of SNVs in top 50 single-site hotspots across all analyzed 

individual cohorts and meta-cohorts. 

 

Extended Data Fig. 2: Genomic element statistics. a, Percentage of genomic coverage 

for each element type. b, Distribution of element lengths for each element type. 

 

Extended Data Fig. 3: Integration details. a Quantile-quantile plots of p-values reported by 

various driver detection algorithms on the three simulated data sets (Broad, DKFZ, and 

Sanger; shown for coding regions in the meta-carcinoma cohort) showed no major 

enrichment of mutations above the background rate. Results generally followed the expected 

null (uniform) distribution, and the p-values reported on simulated data were subsequently 

used to assess the covariance of method results. b, Quantile-quantile plots of integrated p-

values using the Brown and Fisher methods for combining p-values across the different 

driver detection algorithm results were generated for a few representative tumor cohorts 

(shown here for coding regions). Brown combined p-values (light blue) generally followed the 

null distribution as expected, while Fisher combined p-values were significantly inflated (dark 

blue), confirming that dependencies existed between the results reported by the various 
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driver detection algorithms. To simplify the integration procedure, we calculated covariances 

using p-values from the observed data instead of simulated data and found that the 

integrated results based on the observed covariances (first column of plots) were essentially 

the same as the results obtained using the simulated covariances (second, third, and fourth 

columns of plots). c, Triangular heatmaps showing the Spearman correlations of p-values 

among the various driver detection methods in observed versus simulated data (coding 

regions, meta-carcinoma cohort) are highly similar. Differences in the observed and 

simulated correlation values (shown in the far-right heatmaps) were minimal, and thus the 

final integration of p-values across methods was performed using covariances estimated on 

observed data. d, Integrated p-values based on observed and simulated covariance 

estimations (shown on the right, top heatmap, for coding regions in glioblastoma) did not 

differ noticeably. In cases where individual methods reported results that yielded 

substantially fewer hits than the median across all methods (bottom heatmap, methods in 

light grey with results in dashed box), removing the methods from the integration did not 

affect the number of significant genes identified (right column of results in bottom heatmap, 

shown for coding regions in lung adenocarcinoma). 

 

Extended Data Fig. 4: Sensitivity of driver discovery methods. The performance of 

different driver discovery methods and of the integration method on protein-coding genes 

was evaluated using known cancer genes. A list of 603 Cancer Gene Census genes (CGC, 

v80) was used as a reference gold-standard set of known cancer genes. a-c, For each 

method, genes with q-value<0.10 were sorted according to their p-value and the fraction of 

CGC genes shown in the y-axis. The total number of significant genes identified by each 

method is shown in the x-axis. The integration approach tends to outperform most methods 

across cohorts, yielding longer lists of significant genes and more strongly enriched in known 

cancer genes. d, Heatmap depicting the number of known cancer genes identified by each 

method and by the integration approach in each cohort. The color of each cell reflects the 

relative sensitivity of each method in each cohort, measured as the number of cancer genes 

detected by a method (also shown as a number inside each cell) divided by the maximum 

number detected by any of the methods. Methods are sorted from top to bottom according to 

their mean relative sensitivity across datasets. 

 

Extended Data Fig. 5: Sensitivity vs. specificity in individual cohorts vs. meta cohorts 

for candidate drivers. q-values for the most significant individual cohort (x-axis) vs. meta 

cohort (y-axis) are shown. Driver elements are colored by their element type.  
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Extended Data Fig. 6: Protein-coding driver elements identified in PCAWG cohorts. 

Significant protein-coding elements identified in this study. Compare to figure 4.  

 

Extended Data Fig. 7: Lack of concordance for non-coding results. Heatmaps depicting 

p-values for methods included in integration for Liver-HCC cohorts. a, Most methods agree 

on the top protein-coding hits. b, c: Agreement between methods on non-coding hits is far 

lower for Liver-HCC promoters (b) and 3’UTRs (c).  

 

Extended Data Fig. 8: Mutation to expression correlation. Expression is compared 

between mutated and non-mutated samples. For each element, the z-score of the 

expression values for mutated and wild type in the significant cohort is plotted. For copy 

numbers, SCNA amplification indicates SCNA > 10, SCNA gain indicates SCNA ≥ 3, SCNA 

loss indicates SCNA ≤ 1 and no events indicates SCNA < 3 and SCNA >1. If a patient is 

mutated with multiple point mutation types, indels are indicated over SNVs. 

 

Extended Data Fig. 9: Focal amplifications including TOB1, HES1 and RMRP in TCGA 

tumors. a, Copy number profiles of 55 of 441 stomach adenocarcinomas from TCGA show 

copy number gains around HES1. b, TOB1 and its gene neighbor WIFKKN2 are focally 

amplified in cancer. 172 of 10844 total samples from 33 cancer types are shown. c, RMRP 

focal amplifications in TCGA cancers (160 of 10844 total tumors shown). d, RMRP 

secondary structure (RF00030 in Rfam) labeled with P4 tertiary interactions as well as 

protein and substrate interactions (reported as ± 3bp windows). Mutations and their 

predicted structural impact are indicated. Lymphoma and melanoma mutations are excluded. 

 

Extended Data Fig. 10: Density of potential germline polymorphisms and somatic 

mutations in several candidates. Genomic overviews showing mapping quality masks 

from the 1,000 Genomes Project (pilot/strict), and densities of germline SNP and somatic 

SNV calls on PCAWG normal and tumor samples, respectively. Excess of germline SNP 

calls can be indicative of artifacts, thus an increased number of somatic mutations in such a 

region raises concerns about true mutational recurrence. a, WDR74 promoter, U2 RNA 

element. b, TMEM107 3’UTR. c, RNU12 small RNA. d, RMRP promoter and ncRNA 

transcript. e, RPPH1 ncRNA. f, Genomic overview showing SNVs in mir-142. SNVs 

attributed to the AID mutational signature are marked in orange. 

 

Extended Data Fig. 11: Supporting information for NEAT1 and MALAT1. a, Mutation 

density in the NEAT1 and MALAT1 genomic loci. Co-localized peaks of densities in the loci 

are seen for structural variants, SNVs and indels. b, Levels of expression of the genes 
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enriched in 2-5 bp indels in their respective tissues. Background gene expression levels are 

shown to the left for comparison. c, Heatmap showing the levels of expression across 

tissues for the genes enriched in 2-5 bp indels. d, The average cancer allelic fraction (CAF) 

is compared between each genomic element and the corresponding flanking regions (+/- 

2Kb and introns; overlapping coding exons were excluded). The size of the points represent 

the number of mutated samples for each particular element. e, The relative rate of loss of 

heterozygosity (LOH) is compared between mutated and wild-type samples, coloured by 

element type and highlighting significant LOH enrichments with an outside black circle. f, 

Expression comparison between mutated and wild-type samples. For each element, the 

median log2 fold expression difference of cohorts found significant in the driver discovery is 

plotted. If elements were significant in multiple cohorts, the one with the most significant 

expression difference is shown. Number of mutated samples refers to tumors for which 

RNA-seq data could be obtained. Element types are colored as indicated in the legend. 

Elements with a significant expression difference (q < 0.1 or q < 0.01) are indicated by 

circles. g, Number samples with structural variants (SV) near or in each element is plotted 

against the number of patients with a point mutation. Number of SVs is the sum of event 

counts in bins of 50 kb regions that overlap with a given element. Elements with a 

significantly higher than expected number of samples with SVs are indicated with black 

circles (q < 0.1). 

 

Extended Data Fig. 12: Lack of detection power in specific elements. a, Cumulative 

Average d.s. for selected elements across 60 patients. Exon 3 of the colon cancer gene 

TCF7L2 is 90% powered in only 14/60 (23%) of patients. The TERT promoter and 5’UTR 

element of AKT1 show lack of detection power in the majority of patients. b, Distribution of 

TERT promoter hotspot (chr5:1295250; hg19) detection sensitivity for each each patient, by 

cohort. Grey dots indicate values for individual patients inside estimated distribution (areas 

colored by cohort). Horizontal black bars mark the medians. Numbers above distributions 

indicate the percentage of patients powered (d.s. ≥90%) in each cohort. 

c, Left: distribution (pink) of detection sensitivity across all breast cancer patients (Breast-

AdenoCa, Breast-LobularCa, Breast-DCIS; grey dots) at the FOXA1 promoter hotspot site 

(chr14:38064406; hg19). The number above the distribution plot indicates the percentage of 

patients powered (d.s. ≥90%). Black horizontal bar indicates the median of the distribution. 

Right: percentage of patients with observed (blue) and inferred missed (red) mutations. Error 

bar indicates 95% confidence interval. 

 

Supplementary Tables 

Supplementary Table 1: Genomic element type summary statistics 
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Supplementary Table 2: Driver discovery method description 

Supplementary Table 3: Driver discovery methods included in integration 

Supplementary Table 4: Summary and annotation of protein-coding driver candidates 

Supplementary Table 5: Summary and annotation of non-coding driver candidates 

Supplementary Table 6: Summary of additional evidence for non-coding driver candidates 

Supplementary Table 7: List of cancer genes used in this study 

Supplementary Table 8: List of cases used in detection sensitivity analysis 

Supplementary Table 9: Impact of covariates on obs/exp ratio 

Supplementary Note 
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1. Patient cohorts 

Generation of high-quality tumor set (Loris Mularoni) 

We selected a total of 2583 samples to be included in the driver detection analyses. This list 

contains all the samples that were not flagged as problematic by the PCAWG-TECH group. 

A single aliquot was assigned to each sample; in cases where multiple aliquots were 

present, we selected a single aliquot based on the following criteria, in order of importance:  

- we prioritized primary tumors over metastatic or recurrent tumors  

- we selected aliquots with an OxoG score higher than 40 

- we prioritized aliquots with the highest quality (as indicated by the Stars values) 

- we prioritized aliquots with RNA-seq data availability 

- we prioritized aliquots with the lowest contamination (as indicated by the ContEst values) 

- if a selection could not be made after applying the above filters we selected an aliquot 

randomly 

 

Selection of tumor cohorts for analysis (Esther Rheinbay) 

Individual tumor type cohorts from the high-quality tumor set were selected for analysis if 

they met a minimum size. This size was determined based on the cumulative number of 

patients, such that no more than 2.5% of total patients were excluded. This led to a minimum 

cohort size criterion of 20 patients, and removed the Bone-Cart (9 donors), Bone-Epith (11), 

Bone-Osteoblast (5), Breast-DCIS (3), Breast-LobularCa (13), Cervix-AdenoCa (2), Cervix-

SCC (18), CNS-Oligo (18), Lymph-NOS (2), Myeloid-AML (13) and Myeloid-MDS (2) 

individual cohorts. Samples from these cohorts were still included in meta-cohort analysis 

(see below). 

 

Tumor meta-cohorts (Esther Rheinbay) 

Tumor meta-cohorts were assembled for identification of drivers and increase of discovery 

power across cell lineages and organ systems. The following meta cohorts were used in 

driver analyses: 

By cell type of origin: 

Epithelial: Carcinoma (comprised of tumor cohorts Bladder-TCC, Biliary-AdenoCa, 

Breast-AdenoCa, Breast-LobularCa, Cervix-AdenoCa, ColoRect-AdenoCa, Eso-

AdenoCa, Kidney-ChRCC, Kidney-RCC, Liver-HCC, Lung-AdenoCa, Ovary-

AdenoCa, Panc-AdenoCa, Panc-Endocrine, Prost-AdenoCa, Stomach-AdenoCa, 

Thy-AdenoCa, Uterus-AdenoCa,Head-SCC, Cervix-SCC, Lung-SCC), 

Adenocarcinoma (Biliary-AdenoCa, Breast-AdenoCa, Breast-LobularCa, Cervix-

AdenoCa, ColoRect-AdenoCa, Eso-AdenoCa, Kidney-ChRCC, Kidney-RCC, Liver-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2017. ; https://doi.org/10.1101/237313doi: bioRxiv preprint 

https://doi.org/10.1101/237313
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

HCC, Lung-AdenoCa, Ovary-AdenoCa, Panc-AdenoCa, Prost-AdenoCa, Stomach-

AdenoCa, Thy-AdenoCa, Uterus-AdenoCa), squamous epithelium (Head-SCC, 

Cervix-SCC, Lung-SCC) 

Mesenchymal cells/sarcoma (Bone-Cart, Bone-Epith, Bone-Leiomyo, Bone-

Osteosarc) 

Glioma (CNS-PiloAstro, CNS-Oligo, CNS-GBM) 

Hematopoietic system (Lymph-BNHL, Lymph-CLL, Lymph-NOS, Myeloid-AML, 

Myeloid-MDS, Myeloid-MPN) 

By organ system:  

digestive tract (Liver-HCC, ColoRect-AdenoCa, Panc-AdenoCa, Eso-AdenoCa, 

Stomach-AdenoCa, Biliary-AdenoCa), kidney (Kidney-RCC, Kidney-ChRCC), lung 

(Lung-AdenoCa, Lung-SCC), lymphatic system (Lymph-BNHL, Lymph-CLL, 

Lymph-NOS), myeloid (Myeloid-AML, Myeloid-MDS, Myeloid-MPN), breast (Breast-

AdenoCa, Breast-LobularCa), female_reproductive_system (Breast-AdenoCa, 

Breast-LobularCa, Cervix-AdenoCa, Cervix-SCC, Ovary-AdenoCa, Uterus-

AdenoCa), central nervous system (CNS-PiloAstro, CNS-Oligo, CNS-Medullo, 

CNS-GBM) 

Pan-cancer:  

 Two “Pan-cancer” cohorts were created: “Pancan-no-skin-melanoma” containing all 

tumor types with the exception of Skin-Melanoma to remove issues caused by very high 

mutation rate tumors; and “Pancan-no-skin-melanoma-lymph” with the additional removal of 

lymphoid tumors (Lymph-BNHL, Lymph-CLL, Lymph-NOS) that have local somatic 

hypermutation caused by AID. 
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2. Mutational hotspot analysis (Randi Istrup Pedersen) 

We selected the top 50 single position hotspots based on the number of patients with an 

SNV mutation. The individual positions marked as problematic by the site-specific noise filter 

(see below) analysis were excluded. 

 

Each hotspot was defined by its genomic position and annotated by the number of patients 

with an SNV mutation in the given hotspot. We also annotated each hotspot with whether it 

falled in one of the genomic element types analyzed in the driver discovery. We further 

overlapped with loop-regions of palindromes, which are hypothesized to fold into DNA-level 

hairpins, and with location in immunoglobulin loci. When a hotspot overlapped a protein-

coding gene we extracted the corresponding amino acids changes from Oncotator1 

(http://portals.broadinstitute.org/oncotator/). 

 

We identified known driver hotspots, by overlap with the somatic driver positions compiled in 

the Cancer Genome Interpreter repository 

(https://www.cancergenomeinterpreter.org/mutations), which among others include 

mutations from ClinVar, DoCM and the literature (ref: https://doi.org/10.1101/140475). 

 

For each hotspot we calculated the proportion of mutations in the defined cohorts and meta-

cohorts. Only cohorts with at least 20 patients, and at least 10 patients or 10% of patients 

with an SNV were included in Fig. 1a (for the distribution in all cohorts and meta-cohorts see 

Extended Data Fig. 1). Lymph-BNHL and Lymph-CLL were shown together as Lymphoid 

malignancies. 

 

Based on mutational signature analysis of all the cancer samples, we extracted the posterior 

probability that each hotspot mutation from a given patient was generated by one of 37 

identified mutational signatures. In lymphoid malignancies somatic hyper-mutations 

generated by AID come in clusters along the genome. Posterior probabilities for the ten 

signatures relevant for the lymph cohorts were therefore derived from models that consider 

the correlation of AID mutations along the genome. For each hotspot the collected posterior 

probabilities were averaged. 
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3. Mutational Signatures (Jaegil Kim) 

We performed a de novo global signature discovery to identify mutational signatures 

operating in PCAWG WGS cohort (N = 2,583). All single nucleotide variants (SNVs) were 

stratified into M = 4608 mutation channels according to the combination of six base 

substitutions at pyrimidine bases (C>A/G/T and T>A/C/G) in penta-nucleotide sequence 

contexts and a transcription strand direction, transcribed (-), non-transcribed (+), non-coding 

regions. All insertions and deletions were classified into additional 20 channels depending on 

the number of inserted or deleted bases and any indels beyond 9 bases were grouped into a 

single channel. The resulting mutation frequency matrix X (4,628 channels across 2,583 

samples) were ingested to the Broad Institute’s signature analysis pipeline, 

SignatureAnalyzer, to determine the optimal number of signatures (K) and the signature 

profiles by de-convoluting X into a product of two non-negative matrices as X ~ WH, W (M × 

K) and H (K × N) being a signature-loading and an activity-loading matrix, respectively. The 

most distinguished feature of SignatureAnalyzer is that it suggests an optimal number of 

signatures best explaining X at the balance between the error measure and the model 

complexity exploiting Bayesian non-negative matrix algorithm (NMF)2,3,4. Our de-novo 

signature discovery identified 37 signatures including a split of 4 UV-related signatures, 3 

APOBEC-related signatures, 5 POLE-related signatures, 3 MSI-related signatures, 2 

COSMIC17 signatures, and other 21 singleton signatures (see PCAWG7 paper for details). 

  

Although the matrix H contains the most representative activity across samples it also has 

spurious activity assignments intrinsic to the global signature discovery (i.e., applying 

SignatureAnalyzer on samples with different histological subtypes and mutational 

processes).  To minimize this contamination and interference we re-assigned activity 

separately in each histological subtype using a more refined projection approach. We first 

identified a subset of ultra-mutant samples with a dominant activity of POLE (n = 8), MSI (n = 

18), and alkylating signatures (n = 1) from the original H, which are usually very exclusive to 

samples with a specific DNA repair or replication defect, or a treatment. To prevent a false-

positive assignment of these signatures in remaining samples we introduced a binary matrix 

Z (37 × N), where the row elements corresponding to POLE, MSI, and alkylating signatures, 

are set to zero except for samples with a dominant activity, while all other elements are set 

to one. More specifically, the projection was done by keeping the signature-loading matrix W' 

(M × 37) frozen  (W' represents the normalized signature profiles of 37 global signatures), 

while allowing SignatureAnalyzer to determine a subset of signatures and infer the activity-

loading matrix H' (37 × N') that best approximates the mutation frequency matrix X' (M × N'), 

where N' represents the number of samples in each histological subtype, as X' ~ W' (Z'¤H'), 

Here “¤” denotes element-wise multiplications.  
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4. Definition of genomic elements (Morten Muhlig Nielsen; Nicholas Sinnott-Armstrong) 

For coding elements and elements pertaining to protein coding genes (3’UTR, 5’UTR and 

protein coding promoters) regions were defined based on GENCODE annotations (v.19)5: 

 

Coding elements (CDS): The set of coding bases collapsed across all coding transcripts 

with a given GENCODE gene ID.  

 

Protein coding splice site elements (pcSS): Intronic regions extending 6 bases from 

donor splice sites and 20 bases from acceptor splice sites were collected for all coding 

transcripts. Bases were collapsed across all coding transcripts with a given GENCODE gene 

ID. The global set of CDS bases were subtracted.  

 

5’UTR elements (5UTR): The set of 5’UTR bases collapsed across all coding transcripts 

with a given GENCODE gene ID. The global set of CDS and pcSS bases were subtracted.  

 

3’UTR elements (3UTR): The set of 3’UTR bases collapsed across all coding transcripts 

with a given GENCODE gene ID. The global set of CDS, pcSS and 5UTR bases were 

subtracted.  

 

Protein coding promoter elements (pcPROM): Regions extending 200 bases in both 

directions from all protein coding transcripts’ transcription start sites (5’ ends). Bases were 

collapsed across all coding transcripts with a given GENCODE gene ID. The global set of 

CDS and pcSS bases were subtracted.  

 

lncRNA elements: lncRNA transcripts were defined based on annotations from GENCODE 

(v.19) and MiTranscriptome (v.2)6 not overlapping GENCODE. Transcripts were included if 

fulfilling criteria 1-5 and 6 or 7 below: 

1) No sense overlap to protein coding gene regions 

2) More than 5kb away from protein coding genes on sense strand. 

3) Longer than 200 bases. 

4) Not annotated as the following biotypes: immunoglobulin, T-cell receptor, Mt_rRNA, 

Mt_tRNA, miRNA, misc_RNA, rRNA, scRNA, snRNA, snoRNA, ribozyme, sRNA or 

scaRNA. 

5) Not overlapping genomic regions aligning back to the human genome (self chained 

regions). 

6) More than 20% of bases overlap conserved elements (except if annotated as 

pseudogene) 
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7) Expressed in more than 10% of PCAWG samples with RNAseq data. 

 

Genes corresponding to the selected transcripts were supplemented with a set of known 

functional lncRNA genes from the literature in addition to GENCODE annotated non-coding 

snoRNA and miRNA host genes. The elements were made by collapsing bases across 

transcripts with given gene ID. The global set of CDS, pc_SS, 5UTR, 3UTR, pcPROM and 

lncRNA_SS bases were subtracted. 

 

lncRNA splice site elements (lncRNASS): Intronic regions extending 6 bases from donor 

splice sites and 20 bases from acceptor splice sites were collected for all lncRNA transcripts. 

Bases were collapsed across all lncRNA transcripts with a given gene ID. The global set of 

CDS, pc_SS, 5UTR, 3UTR and pcPROM bases were subtracted. 

 

lncRNA promoter elements: Regions extending 200 bases in both directions from all 

lncRNA transcripts’ transcription start sites (5’ends). Bases were collapsed across all 

lncRNA transcripts with a given gene ID. The global set of CDS, pc_SS, 5UTR, 3UTR, 

pcPROM and lncRNA_SS bases were subtracted. 

 

Short RNA elements: Short RNA transcripts were defined based on annotations from 

databases Rfam (v.11)7, tRNAscanSE (v.2.0)8 and snoRNAdb (v.3)9 in addition to 

GENCODE transcripts with biotype annotations mt_rRNA, mt_tRNA, misc_RNA, rRNA and 

snoRNA. 

Bases were collapsed across all smallRNA transcripts with a given gene ID. The global set 

of CDS, pc_SS, 5UTR, 3UTR and pcPROM bases were subtracted. 

 

microRNA elements: Mature miRNAs were defined based on mirBase (v.20)10 and a set of 

potential novel miRNAs11  

 

Enhancers: Contiguous 15-state ChromHMM called enhancers correlated between 

H3K4me1 and RNA-seq across 57 human tissues were downloaded from Roadmap 

Epigenomics Consortium extended data12. Associated links, defined by co-occurring activity 

in a given cell type, were merged across cell types at FDR = 0.1. HoneyBadger213 p10 calls 

for all DNase I sites were filtered to peaks with signal strength 0.8 or greater and intersected 

with enhancer elements. The union of all DNase I peaks which overlapped with a given 

element, with all CDS regions filtered out, were used as the input to driver detection. 
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5. Candidate driver identification methods 

A summary of approaches used by each method is listed in Supplementary Table 2. 

ActiveDriverWGS (Juri Reimand)  

Driver analysis with ActiveDriverWGS (ref) was performed after discarding hypermutated 

samples (>90,000 mutations) from the PCAWG cancer cohort.To avoid leakage of signals 

from known cancer drivers, we removed missense mutations in analyses of non-coding 

regions. ActiveDriverWGS is a local mutation enrichment method for genome-wide discovery 

of cancer driver mutations with increased mutation burden of single nucleotide variants 

(SNVs) and indels. ActiveDriverWGS performs a model-based test whether a given genomic 

element is significantly more mutated than adjacent background genomic sequence (+/- 

10kb and introns). Statistical significance of mutations is computed with a Poisson-linked 

generalised linear regression model. The null model treats all SNVs with trinucleotide 

context as cofactor, while indels are modelled with a separate cofactor for all nucleotides. 

Mutation counts per nucleotide are presented as the response variable The alternative 

model tests whether the element has different mutation burden than the background 

sequence. The null and alternative models are compared with chi-square tests and 

confidence intervals of expected mutations were derived from the null model using 

resampling. If the confidence intervals indicated significant excess of mutation in the 

background and depletion in the element of interest, we inverted corresponding small p-

values (p=1-p if p<0.5). Elements with no mutations were automatically assigned p=1.  

 

CompositeDriver0.2 (Eric Minwei Liu, Ekta Khurana) 

We have developed CompositeDriver (ref) – a computational method that combines signals 

of mutation recurrence and the functional impact score derived from FunSeq2 scheme14 to 

identify coding and non-coding elements under positive selection. CompositeDriver assigns 

a score to each region of interest (i.e., CDS, promoter, UTR, enhancer or ncRNA) through 

summation of positional mutation recurrence multiplied by the functional impact score for all 

mutations within the region. A null CompositeDriver score distribution is built to calculate the 

p-value for a region of interest. Mutations in the same element type but outside the region of 

interest are defined as background mutations. To build the null distribution, the same 

numbers of mutated positions are repeatedly drawn (default is 105 times) from background 

mutations with similar replication timing and similar mutation context15. By drawing random 

mutations from the same element type, CompositeDriver incorporates DNase I 

hypersensitive sites and histone modification marks as covariates into the null model16. 

Finally, the Benjamini-Hochberg method is used for multiple hypothesis correction17. 

 

dNdScv (Inigo Martincorena) 
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dNdScv is a maximum-likelihood algorithm designed to test for positive or negative selection 

in cancer genomes or other sparse resequencing studies. dNdScv models somatic 

mutations in a given gene as a Poisson process, accounting for sequence composition and 

mutational signatures using 192 trinucleotide substitution rates. Mutation rates are also 

known to vary across genes, often co-varying with functional features of the human genome, 

such as replication time and chromatin state. This information is exploited by dNdScv to 

refine the estimates of the background mutation rate of each gene, using a negative 

binomial regression. This regression removes known sources of variation of the mutation 

rates and models the remaining unexplained variation of the mutation rate across genes as 

being Gamma distributed, which protects the method against overconfidence in the 

estimated background mutation rate for a gene. Overall, the local mutation rate for a gene is 

estimated accounting for mutational signatures in the samples analysed, the sequence 

composition of a gene in a trinucleotide context, 20 epigenomic covariates and the local 

number of synonymous mutations in the gene. Inferences on selection are carried out 

separately for missense substitutions, truncating substitutions (nonsense and essential 

splice site mutations) and indels, and then combined into a global P-value per gene. dNdScv 

has been described in much greater detail elsewhere18. 

 

DriverPower (Shimin Shuai) 

DriverPower is a combined burden and functional impact test for coding and non-coding 

cancer driver elements. In the DriverPower framework, randomized non-coding genome 

elements are used as training set. In total 1373 reference features covering nucleotide 

compositions, conservation, replication timing, expression levels, epigenomic marks and 

compartments are collected for downstream modelling. For the modelling, a feature selection 

step by randomized Lasso is performed at first. Then the expected background mutation rate 

is estimated with selected highly important features by binomial generalized linear model. 

The predicted mutation rate is further calibrated with functional impact scores measured by 

CADD and Eigen scores. Finally, a p-value is generated for each test element by binomial 

test with the alternative hypothesis that the observed mutation rate is higher than the 

adjusted mutation rate. 

 

ExInAtor (Andres Lanzos; Rory Johnson) 

ExInAtor was specifically created for prediction of cancer driver lncRNAs, but is agnostic to 

gene type and can also be used for protein-coding genes. The exons of each gene are 

identified and collapsed across transcript isoforms. For each gene, the trinucleotide content 

of the exonic region is calculated. The remaining intronic regions, along with 10 kb of 

sequence upstream and downstream, are defined as the background region. From this 
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background, a new background region is created by randomly sampling the maximum 

number of nucleotides, such that the trinucleotide content exactly matches that of the exonic 

region. Next, the number of mutations in the exonic and sampled background regions are 

compared by hypergeometric test. Genes with elevated exonic mutational density are 

considered candidate driver genes. ExInAtor was used with randomisation seed of 256. 

Otherwise ExInAtor was run exactly as described in Lanzós et al, 201719. 

 

LARVA (Jing Zhang; Lucas Lochovsky) 

LARVA20, or Large-scale Analysis of Recurrent Variants in noncoding Annotations, is a 

computational method that detects significantly elevated somatic mutation burdens in 

genomic elements—both coding and non-coding—to identify putative cancer-driving 

elements. Given a cancer cohort variant call set, and a list of genomic elements, LARVA 

models the expected background somatic mutation rate by fitting a beta-binomial distribution 

to the elements' variant counts. This model properly accounts for the high mutation rate 

variability seen throughout the genome, which improves over some previous models' 

assumption of a constant mutation rate. LARVA's model also incorporates the influence of 

mutation rate covariates, such as DNA replication timing. LARVA's output lists each genomic 

element from the input, along with a p-value based on the deviation of the element's 

observed variant count from the expected variant count under LARVA's model. 

 

MutSig (Julian Hess, Esther Rheinbay) 

The MutSig suite21 classifies whether genomics features, both coding and non-coding, are 

highly mutated relative to a predicted background mutation rate (BMR), which varies on a 

macroscopic-level across patients (patient-specific mutation rates can span orders of 

magnitude across pan-cancer cohorts) and genes (known covariates such as replication 

timing are strongly correlated with mutation rate) and on a microscopic level across 

sequence contexts (since mutational signatures are heterogeneous across a cohort and 

highly context-dependent). MutSig accounts for all three of these to compute the joint BMR 

distribution across genes/patients/contexts, and then convolves across the latter two 

dimensions to estimate the expected distribution of total background burden for a given gene 

across a whole cohort. Genes are then scored by how their total non-background burden 

exceeds this null distribution. 

 

MutSig estimates a gene’s BMR by its synonymous mutation rate for coding genes, and by 

its mutation rate at nonconserved positions for non-coding genes. If the number of 

background mutations in a given gene is insufficient to provide a confident estimate of its 
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BMR, MutSig will incorporate the background counts from other genes with similar covariate 

profiles into its estimator. 

 

MutSig (MutSig2CV) was originally designed for coding regions only21. Modifications to this 

version of the algorithm to run on non-coding regions are novel to PCAWG. Coding MutSig 

also incorporates per-gene functional impact and clustering tests, which were not run on 

non-coding regions. 

 

NBR (Inigo Martincorena) 

NBR is a method that test for evidence of higher mutation density than expected by chance 

in a given region of the genome, while accounting for trinucleotide mutational signatures, 

sequence composition and the local density of mutations around each element. This method 

has been described in detail in a previous publication22, where it was used to identify 

candidate driver noncoding elements across 560 breast cancer whole-genomes. 

  

Based on some of the features of dNdScv, NBR involves two main steps. First, all mutations 

across all elements tested are used to obtain maximum-likelihood estimates for the 192 rate 

parameters (rj) describing each of the possible trinucleotide substitutions in a strand-specific 

manner. rj = nj/Lj , where nj is the total number of mutations observed across samples of a 

given trinucleotide class (j) and Lj is the number of available sites for each trinucleotide. 

These rates are used to estimate the total number of mutations across samples expected 

under neutrality in each element considering the mutational signatures active in the cohort 

and the sequence of the elements (Eh = Sj rjLj,h). This estimate assumes no variation of the 

mutation rate across elements in the genome. Second, a negative binomial regression is 

used to refine this estimate of the background mutation rate of an element, using covariates 

and Eh as an offset. In this study, the local density of somatic mutations (normalized by 

sequence composition) was used as a covariate, using a window around the element of a 

variable size across cohorts to ensure sufficient numbers of mutations in each window 

around each element and excluding coding sequences and previously identified candidate 

noncoding driver regions. Replication time and average gene expression level for 100 kb 

genomic bins were also used as covariates. The negative binomial regression models 

mutation counts as Poisson-distributed within an element with mutation rates varying across 

elements according to a Gamma distribution. As in dNdScv, this provides a refined estimate 

of the background mutation rate for each element (Eh*) as well as a data-driven measure of 

uncertainty around this estimate (-q- the overdispersion parameter of the negative binomial 

regression). P-values for each element are calculated using a cumulative negative binomial 
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distribution with the mean (Eh*) and dispersion (q) parameters estimated by the negative 

binomial regression. 

  

To protect against neutral indel hotspots or indel artefacts, unique indel sites rather than total 

indels per element were used. To protect against misannotation of a mutation clusters as 

sets of independent events, a maximum of two mutations per region and per sample were 

considered in the analysis. 

 

ncdDetect (Malene Juul) 

ncdDetect23 is a driver detection method tailored for the non-coding part of the genome. It 

uses a burden based approach, in which the frequency of mutations is considered, to reveal 

signs of recurrent positive selection across cancer genomes. For each candidate region, the 

observed mutation frequency is compared to a sample- and position-specific background 

mutation rate. A scoring scheme is applied to further account for functional impact in the 

significance evaluation of a candidate cancer driver element. In the present application, the 

scoring scheme is defined as log-likelihoods, i.e. minus the natural logarithm of the sample- 

and position-specific probabilities of mutation. 

  

The position- and sample-specific probabilities of mutation used by ncdDetect are obtained 

by a statistical null model, inferred from somatic mutation calls of a collection of cancer 

samples (https://doi.org/10.1101/122879). The model includes a set of genomic annotations, 

known to correlate with the mutation rate in cancer. These are replication timing, 

trinucleotides (the nucleotide under consideration and its left and right flanking bases), 

genomic segment (a variable segmenting the genome into regulatory element types) and a 

position-specific measure of the local mutation rate (a weighted average of the mutation rate, 

calculated across samples in a 40 kb window flanking each specific position plus/minus 10 

kb). 

 

ncDriver (Henrik Hornshøj) 

The ncDriver method (doi: https://doi.org/10.1101/182642) provides separate evaluations 

of the significance for two functional mutation properties, the level of conservation and the 

level of cancer type specificity. In the ncDriverConservation test, the conservation level of 

mutated positions were evaluated locally for being surprisingly high, given the distribution of 

conservation within the element. The p-value of the mean mutation phyloP conservation 

score for an element was obtained by Monte Carlo simulation of 100,000 mean phyloP 

scores based on the same number of mutations. Each mutated element was also evaluated 

globally by looking up the rank of the element mean phyloP conservation score among all 
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elements annotated as the same type. This provided p-values for both local and global 

mutation conservation level, which were combined into a single conservation p-value using 

Fisher’s method. In the ncDriverCancerType test, the distribution of observed mutation 

counts of an element across the cancer types were evaluated for being surprising compared 

to expected counts estimated from a background null model (as described for the ncdDetect 

method) that accounts for cancer type specific mutation signatures and other co-variates. A 

Goodness-of-fit test with Monte Carlo simulation was used to determine whether the 

distribution of observed mutation counts across cancer types within the element is surprising 

given the expected mutation counts based on cancer types, mutation contexts and element 

type. For indels, the expected mutation counts were estimated solely from the mutation rates 

calculated from the mutation context, cancer type and element type. 

 

OncodriveFML (Loris Mularoni) 

OncodriveFML24 is a method designed to estimate the accumulated functional impact bias of 

tumor somatic mutations in genomic regions of interest, both coding and non-coding, based 

on a local simulation of the mutational process affecting it. The rationale behind 

OncodriveFML is that the observation of somatic mutations on a genomic element across 

tumors, whose average impact score is significantly greater than expected for said element 

constitutes a signal that these mutations have undergone positive selection during 

tumorigenesis. This, in turn is considered as a direct indication that this element drives 

tumorigenesis.  

 

OncodriveFML first computes the average functional impact score of the observed mutations 

in the element of interest. The functional impact scores of mutations have been calculated 

using both CADD25 (coding and non-coding regions) and VEST326 (only coding regions). 

Then the method randomly samples the same number of observed mutations following the 

probability of mutation of different tri-nucleotides, computed from the mutations observed in 

each cohort. The randomization step is repeated many times (1,000,000 in these analyses) 

and each time an average functional impact score is calculated. Finally, OncodriveFML 

derives an empirical p-value for each element by comparing the average functional impact 

score observed in the element to its local expected average functional impact score resulting 

from the random sampling. The empirical p-values are then corrected for false discovery rate 

and genomic elements that after the correction are still significant are considered candidate 

drivers. 

 

regDriver (Husen M. Umer) 
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regDriver assesses the significance of mutations affecting transcription factor motifs using 

tissue-specific functional annotations (https://doi.org/10.1002/humu.23014). For each tumor 

cohort, functional annotations from the cell lines most similar to the respective tumor type 

are gathered. A functionality score is computed for each mutation based on its overlapping 

functional annotations. regDriver, collects highly-scored mutations in each of the defined 

elements and assesses the elements’ significance by comparing its accumulative score to a 

background score distribution obtained from the simulated sets. Therefore, only candidate 

regulatory mutations are considered in evaluating mutation enrichment per element.  
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6. Simulated datasets 

 

Broad simulations (Yosef Maruvka, Gad Getz) 

Due to their differing context characteristics, we simulated SNVs and indels with different 

approaches. For SNVs, we divided the genome into 50kb regions. For each region, we 

counted the number of mutations in it across all the PCAWG patients and divided it by the 

total number of mutations. Every mutation was randomly assigned into a new region based 

on the region's rate. The position inside the region was chosen to maintain the trinucleotide 

context of each mutation (the 5’ and 3’ nearest neighbors and the mutated position itself) 

and the alternate allele. In addition, for every base we counted how many times it was 

covered sufficiently, in 401 tumor and normal WGS pairs, in order to enable calling of a 

mutation27. The fraction of patients with enough coverage at a given site was used as the 

position’s probability for being mutated inside the new current region.  

 

For indels, a new, randomized position was chosen in a region of 50,000 bases around the 

indel. The position of the new indel was chosen to match the indel 5’ and 3’ neighboring 

reference bases. For insertions, the inserted motif was the same as the original insertion, but 

for deletions only the length of the indels was kept but not the exact sequence. 

 

DKFZ simulations (Carl Hermann, Calvin Chan) 

This simulation utilizes the SNV calls to perform a localised randomisation. The original SNV 

entries which do not map to chromosome 1-22, X, Y are first filtered and excluded from 

randomization. All SNVs located in the protein coding regions (CDS) corresponding to 

GENCODE19 definition are erased before performing randomisation. The trinucleotide 

centered at each SNV position is determined and an identical trinucleotide is randomly 

sampled within the 50kb window. In case of insertion, instead of the mutated trinucleotide, 

the neighboring nucleotide of the insertion site is scanned within the randomisation window. 

For deletion and multi-nucleotides variants, the altered sequence is scanned within the 

randomization window with a ranked probability assigned for each position. The randomised 

sample is then selected from the top 100 matched positions with scaled probability. 

 

Sanger simulations (Inigo Martincorena) 

This simulation aimed to generate datasets of neutral somatic mutations that retain key 

sources of variation in mutation rates known to exist in cancer genomes, including 

mutational signatures, and variable mutation rates across the genome and among 

individuals and cancer types. To do so while minimizing the number of assumptions in the 

simulation, we used a simple local randomization approach. First, all coding mutations as 
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well as mutations in the TERT promoter, MALAT1 or NEAT1 were excluded. Second, each 

mutation in each patient was randomly moved to an identical trinucleotide within a 50 kb 

window, while retaining the patient ID. Third, mutations falling within 50 bp of their original 

position were filtered out. This simple randomization retains the variation of the mutation rate 

and mutational signatures across large regions of the genome, across individuals and across 

cancer types. 
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7. Statistical framework for the integration of results from multiple driver discovery 

methods (Grace Tiao, Gad Getz) 

The classical approach for combining p-values obtained from independent tests of a given 

null hypothesis was described by R. A. Fisher in 1948. He noted that for a set of k p-values, 

the sum X of the transformed p-values, where 

  

X = -2 Σk
i=1 ln(pi) 

  

and pi is the p-value for the ith test, follows a chi-square distribution with 2k degrees of 

freedom28. Thus, to obtain a single combined p-value for a set of independent tests, the new 

test statistic X is computed from the p-values obtained from the tests and scored against a 

chi-square distribution with 2k degrees of freedom. Fisher’s test is asymptotically optimal 

among all methods of combining independent tests29; however, in cases where tests exhibit 

dependence, the Fisher combined p-value is generally too small (anti-conservative). 

 In this study, we combine p-values from several driver detection methods, many of 

which share similar approaches and whose results are therefore not independent. To 

address this issue, we used an extension of the Fisher method developed by Morten Brown 

for cases in which there is dependence among a set of tests29. Using the same test statistic, 

renamed Ψ to indicate the difference in the independence assumption, Brown observed that 

if Ψ were assumed to have a scaled chi-square distribution – i.e., 

  

ψ ~ c X2
2f 

  

then 

  

f = E[ψ]2/var(ψ)  and c = var(ψ)/ 2E[ψ] 

  

  

Note that E[Ψ] = 2k irrespective of the independence requirement, and that 

  

var(ψ) = 4k + 2 Σi<j cov(-2 lnpi, -2 lnpj) 

  

Thus when the pi are independent, var(ψ) = 4k, which gives f = k and c = 1, and the test 

statistic follows the chi-square distribution with 2k degrees of freedom described by Fisher. 

However, when the independence condition is relaxed, var(ψ) ≠ 4k, and the test statistic 

generally follows a different, scaled, chi-square distribution whose scaling parameter c and 

degrees of freedom 2f are determined by the covariances of the pi’s. The covariances can 
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be computed via numerical integration over the joint distributions of all pi and pj pairs, but 

this requires knowledge of the joint distribution; and even in cases where the joint distribution 

is known, the integration may not be computationally feasible for large and complex 

datasets30. 

In this study, following the example of Poole et. al31, we computed the empirical 

covariance of pi and pj, using the samples wi and wj , where wi is the set of all reported p-

values for method i, and used the empirical covariance to approximate the Brown scaled chi-

square distribution. The advantage to this approach is that the empirical covariance 

estimation is non-parametric – it does not assume an underlying joint distribution of pi and pj 

– and is thus applicable to complex and interrelated biological datasets where data is noisy 

and not regularly Gaussian. Poole et. al showed that the empirical covariance estimation 

approach is accurate, robust, and efficient for such datasets. 

  

  

Implementing and evaluating the integration method on simulated and observed data 

To evaluate the efficacy of the empirical Brown’s method of dependent p-value integration, 

we generated three sets of simulated mutation data (see above) and ran the driver detection 

algorithms on each of the simulated datasets. We checked that the p-value results from the 

various driver detection algorithms followed the expected null (uniform) distribution 

(Extended Data Fig. 3a). Then, for each simulated data set, we calculated the empirical 

covariance for each pair of driver algorithm results. We then used these covariance values 

over simulated datasets to compute the combined Brown p-values on observed data: for 

each gene in the observed PCAWG somatic mutation dataset, we computed the Brown test 

statistic from the set of p-values reported by the various driver detection algorithms. The 

Brown test statistic was then evaluated against the appropriate chi-square distribution, 

whose scale and degree parameters were approximated by the covariance values calculated 

on the simulated data (see above). 

  We ran this procedure, as well as the Fisher method, for six representative tumor-

type cohorts (Breast-AdenoCa, CNS-GBM, ColoRect-AdenoCa, Lung-AdenoCa, Uterus-

AdenoCa, and meta-Carcinoma) and found that the Brown combined p-values generally 

followed the null distribution as expected (Extended Data Fig. 3b). The Fisher combined p-

values were significantly inflated (Extended Data Fig. 3b), confirming that dependencies 

existed between the results reported by the various driver detection algorithms. 

  We next explored whether it was possible to reduce the number of algorithm runs 

required to complete these calculations for all tumor-type cohorts by computing the 

covariance values on observed data instead of simulated data. In each of the six 

representative tumor-type cohorts, we calculated the empirical covariances on the observed 
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data only and then computed the integrated Brown p-values on the observed data using the 

observed covariances. Significant genes identified using only observed covariances 

remained mostly unchanged from the significant genes identified using the simulated 

covariances (Extended Data Fig. 3d), and examination of the differences in the covariance 

values between the simulated estimations and the observed estimations revealed only minor 

differences in values (Extended Data Fig. 3c). The significant drivers presented in this study 

were identified using this final approach – e.g., by computing integrated Brown p-values 

using estimations of covariance on observed data only. 

Integration of p-values from observed data was performed for 42 tumor-type cohorts 

and 13 target element types. Methods were selected for each given data set (see “Selecting 

methods to include in the integration of observed p-values”, below) and raw p-values smaller 

than 10-16 were trimmed to that value before proceeding with the integration. Methods with 

missing data for a given element (i.e., ones that failed to report a p-value for a given 

element) were excluded from the calculation for that element, and therefore in some cases 

the integrated Brown p-value was computed from p-values reported by only a subset of all 

the driver detection algorithms contributing results for that data set. 

 

Selecting methods to include in the integration of observed p-values 

In some cases, individual driver detection algorithms reported p-values for a given data set 

that deviated strongly from the expected uniform null distribution. These were methods for 

which the quantile-quantile (QQ) plots demonstrated considerable inflation. We removed 

results that reported an unusual number of significant hits by calculating, for each set of 

results, the number of significant elements found by each individual method using the 

Benjamini-Hochberg FDR with q<0.1 as the significance threshold. Any single method that 

reported four times the median number of significant elements identified by individual 

methods was discarded from the integration. In a separate analysis, we found that removing 

methods that yielded fewer hits than the median (i.e., methods with deflated QQ-plots) did 

not affect the number of significant genes identified through the integration of the reported p-

values (Extended Data Fig. 3d); hence we did not remove such methods. 

 

8. Post-filtering of candidates (Esther Rheinbay, Morten Muhlig Nielsen, Lars Feuerbach, 

Henrik Tobias Madsen) 

Post-filtering of significant hits was performed to remove those with accumulation of 

mutations caused by sequencing problems or mutational processes. In particular, we applied 

the following: (i) at least three mutations are present in the element, (ii) mutations are 

present in at least three patients of the tested cohort, (iii) less than 50% of mutations are 

located in palindromic DNA sequence22, (iv) more than 50% of mutations are located in 
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mappable genomic regions (CRG alignability, DAC blacklisted regions and DUKE 

uniqueness32; (v), less than 50% of mutations occur near indels, (vi) a site-specific noise 

filter (see below); and (vii) manual review of sequence evidence for novel drivers. For 

lymphomas, which contain regions of somatic hypermutation caused by AID enzyme activity, 

we (viii) further required less than 50% of mutations contributed by this process; and for 

Skin-melanoma, we (ix) excluded mutations occurring in the extended (CTTCCG) context 

that contributes to promoter hotspot mutations in this tumor type33,34,35. Even after this motif-

based filter, a large number of promoter and 5’UTR regions remained in the list of 

candidates. We, therefore, marked these as likely due to failed repair in TF occupied sites 

since it is unclear how many of them are true or false drivers. Additionally, elements that 

failed manual mutation review were filtered out at this stage.  

 

Site-specific noise filter 

Genomic positions of mutations in each significant hit were analyzed in all normal control 

samples to assess the position-specific noise-level. Therefore, for each of the three non-

reference nucleotides a and cohort c ϵ C the relative frequency of normal samples which had 

at least two reads supporting the alternative allele a were calculated as p(a,c) ϵ [0;100]. The 

noise score was then computed as !∈! 𝑙𝑜𝑔!"(𝑝(𝑎, 𝑐) + 1) . Mutations at positions with a 

score > 20 for at least one of the non-reference nucleotides were flagged. Elements for 

which the number of mutations at flagged positions exceeded 20% were removed. 

 

DNA palindromes 

We define a palindrome as a sequence of DNA followed by its complementary reverse with a 

sequence of variable length in between (Fig. 3d). It is hypothesized that these palindromes 

can temporarily form DNA hairpins36. While in the hairpin state the loop region is single-

stranded and open to attack by APOBEC enzymes. Based on observations in breast cancer 

whole genome sequences37, we decided to consider palindromes with a minimal repeat 

length of 6 bp and an intervening sequence (loop) length of 4-8 bp. We call these regions 

genome-wide using the algorithm described in Ye et al.38 however using our own 

implementation (https://github.com/TobiasMadsen/detectIR). In total, we find 7.3 M 

palindrome regions covering a total of 135.2 MB of which 33.6 MB are loop sequence. 

 

Computing the false discovery rate 

We controlled the false discovery rate (FDR) within each of the sets of tested genomic 

elements by concatenating all integrated Brown p-values from across all tumor-type cohorts 

and applying the Benjamini-Hochberg procedure17 to the integrated Brown p-values. A q-

value threshold of 0.1 was chosen to designate cohort-element combinations as significant 
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hits. In addition, we defined cohort-element combinations in the range 0.1≤ q<0.25 as “near 

significance”. We next applied several additional, mutation-based filtering criteria to each 

significant or near-significant candidate and assigned p-values of 1 to candidates that failed 

these filtering criteria. Final Benjamini-Hochberg FDR values were then re-calculated on the 

adjusted sets of integrated Brown p-values to arrive at a list of candidate driver cohort-

element combinations. 
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9. Sensitivity and precision analysis of driver predictions (Iñigo Martincorena) 

All methods employed in this study were shown to have a low rate of false positives when 

run on a series of neutral simulated datasets without driver mutations. To evaluate the 

sensitivity and precision of different methods and particularly of our approach for p-value 

integration, we compared their relative performance in detecting known cancer genes when 

applied to protein-coding genes. As a reference gold-standard set of known cancer genes 

we used a list of 603 genes from the manually-curated Cancer Gene Census v80 database. 

Results are shown in Extended Data Fig. 4. 
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10. Gene expression analyses (Samir B. Amin, Morten M. Nielsen, Andre Kahles, Nuno 

Fonseca, Lehmann Kjong, members of the PCAWG Transcriptome Working Group and 

Jakob Skou Pedersen) 

 

To extend the RNAseq-based expression profiling of GENCODE annotations provided by 

the PCAWG Transcriptome Working Group39, we profiled an extended set of gene 

annotations, including a comprehensive set of non-coding RNAs (described above and at 

Synapse:syn5325435).  

 

The profiling used the docker-based workflow described in 39 for 1,180 RNA-seq donor 

libraries, matched to WGS data across 27 different cancer types39. In brief, raw sequence 

reads from donor libraries were uniformly evaluated for QC using FastQC tool, and 

subsequent alignment was performed on QC-passed libraries using two methods: STAR 

(v2.4.0i)40 and TopHat2 (v2.0.12)41. Resulting QC-passed bam files were independently 

used to quantify extended RNA-seq annotations at the gene-level counts using htseq-count 

method with following parameters: -m intersection-nonempty --stranded=no --idattr gene_id. 

This step resulted in two sets of gene-level counts files per donor library which were 

independently normalized using FPKM normalization and upper quartile normalization 

(FPKM-UQ). The final expression values were provided as a gene-centric table (rows as 

genes, columns as samples) with each value representing an average of the TopHat2 and 

STAR-based alignments FPKM values. Gene-centric tables based on both, GENCODE and 

extended RNA-seq annotations are available at Synapse data portal: syn2364711. Docker-

based workflow for quantifying extended RNA-seq annotations is at 

https://github.com/dyndna/pcawg14_htseq  
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11. Normalization for copy number variation (Henrik Tobias Madsen, Morten Muhlig 

Nielsen, and Jakob Skou Pedersen) 

To account for the effects of somatic copy number alterations (SCNAs) on expression, we 

used two different approaches to create two additional versions of the expression profiles: 

First a conservative approach where we remove all samples not having the regular bi-allelic 

copy number for the gene in question. Second a less conservative approach where we build 

a regression model  of expression data based oncopy number (CN) data, and then tested for 

an effect of somatic mutations on the residual (i.e. the expression that is not explained by 

copy number). 

  

Generally the higher the copy number of a particular gene the higher expression. 

The relationship between copy number and gene expression is not strictly linear, as various 

feedback mechanisms in the cell try to compensate for the mostly deleterious effects of 

SCNAs. This is known as dosage compensation and has been studied extensively in the 

context of mammalian sex chromosomes, but also in evolution of yeast and in diseases 

caused by aneuploidy42–45. We therefore fit a linear regression model between the logarithm 

of expression and the logarithm of CN. This effectively amounts to a power-regression 

model. 

 

A number of factors makes it hard to learn the regression parameters for each gene and 

cancer type in isolation. (i) for some cancer types we have only a limited number of samples; 

(ii) for some genes there is not much variation in CN; and (iii) the variation in expression 

between samples is generally high. We overcome these problems by employing a mixed 

model strategy, that allows sharing of information between genes, effectively regularizing the 

parameter estimates for gene cancer-type combinations that carry little information on their 

own. 

 

Let  and  denote the expression and SCNA measurement respectively 

for gene, , in cancer-type, , and sample  respectively. We then define: 

 

, 

 

where  and  are fixed effects, whereas  and  are random effects, with 

 and . Finally the residual is . 

Using this model we infer a global SCNA to expression regression, , but allow some 

regularized gene-specific and gene/cancer type-specific variation:  and .  
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Thus we exploit the similarity across genes and similarity within genes across cancer types. 

 

Since the variance increases with the absolute value of the explanatory variable associated 

with a random slope, this kind of mixed model display heteroskedasticity. Furthermore the 

model is not invariant under scaling of the explanatory variable, in this case SCNA. We 

centralise  SCNA, such that normal diploid regions have the least variance. 
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12. Mutation to expression association (Morten Muhlig Nielsen, Henrik Tobias Madsen, 

and Jakob Skou Pedersen) 

 

Mutation to expression association was calculated using non-parametric rank sum based 

statistics on z-score normalized expression values. This equalizes expression mean and 

variance for each cancer type and is a way to allow for comparison across cancer types. For 

comparisons of expression in mutated vs non-mutated (wild-type) cases within the same 

cancer type, the test reduces to the Wilcoxon rank sum test. For comparisons involving 

samples in multiple cancer types, such as meta-cohorts and pan-cancer cohorts, the statistic 

and associated p-value is still the non-parametric Wilcoxon rank sum test, and thus no 

assumptions regarding distribution of z-score expressions are made. Tied expression values 

were broken by adding a small random rank robust value. Association estimates were 

performed based on original expression values as well as the two copy-number normalized 

expression sets mentioned above. Fold difference values were calculated per mutation as 

the log2 ratio of the expression of the mutated tumor to the median of all wild-type tumors of 

the same cancer type. Reported Fold Difference values for an element with multiple 

mutations represent the median fold difference of all mutations in that element. 
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13. Copy number analyses (Esther Rheinbay) 

We surveyed significant focal copy number alterations for candidate driver genes as 

orthogonal evidence for their “driverness”. Significant copy number alterations were obtained 

from the TCGA Copy Number Portal (http://portals.broadinstitute.org/tcga/home), analysis 

2015-06-01-stddata-2015_04_02 regular peel-off, a database of recurrent copy number 

alterations calculated by the GISTIC2 algorithm46 across >10,000 samples and 33 tumor 

types from TCGA. GISTIC2 results were included for candidate drivers if a gene was 

significant (residual q<0.1) and was located within a peak with ≤ 10 genes. Visualization was 

performed with the Integrative Genomics Viewer (IGV)47.  
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14. Power Calculations (Esther Rheinbay) 

Calculation of mutation detection sensitivity. Average detection sensitivity, the power to 

detect a true somatic variant, was calculated using a binomial model across all exon-like 

regions for different genomic element types as previously published27,48. Detection sensitivity 

was based on sequencing coverage and estimated clonal variant allele fraction from 60 

representative PCAWG alignments from the pilot cases (https://doi.org/10.1101/161562; 

Supplementary Table 7). Clonal allele fraction was estimated based on PCAWG consensus 

purity and ploidy estimates (doi: https://doi.org/10.1101/161562) as purity/(average ploidy)48. 

Element-wise averages were calculated as average across all exons for a given element.  

  

Estimation of total number of promoter hotspot mutations. Detection sensitivity for all 

patients was calculated for the two most recurrent TERT promoter hotspot sites 

(chr5:1295228, chr5:1295250; hg19) using total read depth at these positions, sample purity 

and average ploidy. For each cohort, the number and percentage of powered (≥90%) 

patients was obtained. The number of total expected mutations was then inferred as number 

of observed (called) mutations divided by the fraction of patients powered. The number of 

“missed” mutations is the difference between the total expected and observed mutations. 

Percentages of these numbers were calculated relative to the size of individual patient 

cohorts. Confidence intervals (95%) on the total percentage of patients with a TERT hotspot 

mutation were calculated using the beta distribution. Poisson confidence intervals were 

calculated for the number of missed mutations in the PCAWG cohort. Note that the inference 

of TERT mutations assumes exactly one mutation per patient. Estimates for the FOXA1 

promoter hotspot mutation (chr14:38064406; hg19) were conducted using the same 

procedure. 

 

Calculation of the minimum powered mutation frequency in a population. Power to 

discover driver elements mutated at a certain frequency in the population were conducted as 

described before21,49, but solving for the lowest frequency for a driver element in the patient 

population that is powered (≥90%) for discovery. The calculation of this lowest frequency 

takes into account the average background mutation frequencies for each cohort/element 

combination, the median length and average detection sensitivity for each element type, 

patient cohort size, and a global desired false positive rate of 10%.  
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15. Associations between mutation and signatures of selection: loss of 

heterozygosity and cancer allelic fractions (Federico Abascal, Iñigo Martincorena) 

For protein-coding sequences mutation recurrence can be analysed in the context of the 

functional impact of mutations (e.g. missense, truncating) to better distinguish the signal of 

selection. In contrast, estimating the functional impact of mutations in non-coding elements 

of the genome is a difficult, yet unsolved problem. To overcome this limitation and be able to 

compare selection signatures for both coding and non-coding elements under a similar 

framework, we developed two measures of selection which are agnostic to the functional 

impact of mutations. 

 

Association between mutation and loss of heterozygosity 

When a tumour carries a driver mutation in one allele of a given gene, it may be the case 

that a second hit on the other allele confers a growth advantage and is positively selected. 

When one of the events involves the loss of one of the alleles the process is referred to as 

loss of heterozygosity (LOH). This kind of biallelic losses are typical of, but not exclusive to, 

tumour suppressor genes (TSGs).  

 

For each gene, we build a 2x2 contingency table indicating the number of cases in which the 

gene was mutated or not and the number of cases in which the gene was subject to LOH or 

not. We applied a Fisher’s exact test of proportions to identify which genes showed an 

excess of LOH associated to mutation. P-values were corrected with the FDR method to 

account for multiple hypotheses testing. This analysis was applied to each tumour type and 

cohort separately and proved very successful in identifying TSG as well as some oncogenes 

(OGs) as well. 

 

Association between mutation and cancer allelic fractions 

Driver mutations that provide an advantage for tumour cells are expected to show higher 

allelic fractions based on different interacting processes, including: early selection; 

amplification of the locus carrying the driver mutation; loss of the non-mutated locus (LOH). 

Comparing cancer allelic fractions (CAF) can be informative to detect signatures of selection, 

both for TSGs and OGs. 

 

CAFs are defined here as the proportion of reads coming from the tumour and carrying the 

mutation. To transform observed fractions (VAFs) into CAFs, tumour purity and local ploidy 

needs to be taken into account according to the following formula: 

 

CAF = VAF * (Lp * Pt + 2 * (1 - Pt)) / (Lp * Pt)  
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Where Lp corresponds to the local ploidy for the mutated locus, and Pt denotes the tumour 

purity. Ploidy and tumour purity predictions were obtained from Dentro et al (in preparation). 

 

To determine whether CAFs for a given gene or element were higher than expected we 

compared them to the CAFs observed in flanking regions. To define flanking regions we took 

2 kb at each side of the gene/element, excluding any eventually overlapping coding exon, 

and also included introns (if present). The two sets of CAFs associated to each 

gene/element, i.e. those CAFs lying within the gene and those flanking it, were compared 

with a t-test to detect significant deviations. P-values were corrected with the FDR method. 

This approach was able to identify most known TSGs and OGs. 
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16. Signals of selection in aggregates of non-coding regions of known cancer genes  

(Federico Abascal, Iñigo Martincorena) 

We conducted a series of analyses on regions combined across genes to determine whether 

the paucity of driver mutations found in non-coding regions was related to lack of statistical 

power in single-gene analyses. This analysis also aimed to estimate how many driver 

mutations present in cancer genes were missed in this study. For protein-coding sequences, 

the number of driver mutations was estimated using dN/dS ratios as described in (50). For 

non-coding, regulatory regions of protein-coding genes (Promoter and UTRs), we relied on a 

modified version of the NBR negative binomial regression model described above (Section 

5) to quantify the overall excess of driver mutations. We applied a second approach to 

determine whether there was an enrichment of LOH associated to mutations in the different 

types of non-coding regions associated to protein-coding genes. 

 

Observed vs. expected numbers of mutations based on the NBR mutation model 

NBR was used to estimate the background mutation rate expected across cancer genes, 

using a conservative list of 19,082 putative passenger genes as background. The resulting 

model is used to predict the numbers of expected SNVs and indels per element type per 

gene, and aggregate sums across genes. For this analysis we selected a reduced but 

diverse set of 142 cancer genes, encompassing 27 focally amplified and 22 deleted genes 

found by TCGA and present in the Cancer Gene Census51, and 112 genes with a significant 

signal of selection in this study (q<0.1) and present in the Cancer Gene Census. The list of 

142 genes can be found in Supplementary. Table 7. To be as accurate as possible, we 

used a diverse set of covariates in the NBR model, including: local mutation rate (estimated 

on neutral regions +/- 100 kb around each gene), detection sensitivity (defined as the 

element-average proportion of callable samples per site according to MuTect), gene 

expression covariates (first 8 principal components of the matrix of average gene expression 

values in each tumour type, as well as two binary variables marking the 500 genes with 

highest expression values in any tumour and 1,229 genes with a maximum FPKM lower than 

0.1 across tumour types), and averaged copy-number calls for each gene across all samples 

(see Supplementary Note for more details). For each element type, the sum of observed 

mutations across the 142 cancer genes were compared to the sum of the expected rates to 

estimate the excess of mutations in regulatory and coding regions of cancer genes. An 

excess of observed mutations provides an estimate of the number of driver events18. 

Confidence intervals were calculated using the equation for the ratio of two Poisson 

observations, which are the number of mutations in the list of known cancer genes and in the 

list of passenger genes. It is important to know that these confidence intervals do not capture 

uncertainty in the background model and should be interpreted with caution. For this reason, 
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we systematically evaluated the impact of a diverse array of covariates on our estimates 

(see Supplementary Note). We also note that this test can underestimate the number of 

non-coding drivers since some driver mutations can be present in the list of putative 

passenger genes, although this effect is expected to be quantitatively small if the density of 

driver mutations in regulatory regions of known cancer genes is higher than in those of 

putative passenger genes. 

 

Mutation-LOH association for aggregates of genes 

For this analysis we combined data across known cancer genes, including 603 genes in the 

Cancer Gene Census v80 and 154 additional significantly mutated genes found by exome 

studies18,21. To estimate whether there was an excess of LOH associated to mutation in 

regulatory and coding regions of cancer genes, we calculated the fold change in LOH for the 

aggregate of cancer genes and normalized it dividing by the fold change observed in 

passenger genes. Confidence intervals were estimated using parametric bootstrapping 

(100,000 pseudoreplicates) for both cancer and passenger genes. 
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17. Mutational process and indel enrichment (Federico Abascal, Iñigo Martincorena) 

After noticing the skewed distribution of indel lengths in genes like ALB, SFTBP, NEAT1 and 

MALAT1, we carried a search for other genes showing the same pattern, which may be 

subject to the same mutational process. For every gene we record the proportion of indels of 

length 2-5 bp out of the total number of indels and compared this proportion with the 

background proportion using a binomial test. The background proportion was calculated 

using all protein-coding and lncRNAs genes. For every gene we also calculated the indel 

rate and compared it to the background indel rate using a binomial test. Both sets of p-

values were independently corrected with the FDR method. The analysis was done for each 

tumour type separately. Genes with a q-value < 0.1 both for enrichment in 2-5 bp indels and 

for higher indel rates were further analyzed as candidates to be under the process of 

localized indel hypermutation described in this study. The levels of expression of these 

genes were analysed across all tumour types. 
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18. Mutations association to splicing (Andre Kahles) 

For the assessment of the relationship between mutations in the U2 locus upstream of 

WDR74 and local changes in alternative splicing, we analysed changes in the percent-

spliced-in (PSI) value52 of alternative splicing events located in WDR74 relative to the given 

genotype. The analysis was based on four different alternative splicing event types extracted 

and quantified by the PCAWG Transcriptome Working Group (exon skip, intron retention, 

alternative 3’ splice site, alternative 5’ splice site)39. In total we analysed 116, 103, 27 and 98 

events, respectively, for the above event types. We then filtered the events for a minimum of 

expression evidence (non-NaN PSI) in at least 10 samples, presence of the alternate allele 

together with expression evidence in at least 5 samples, and a minimum absolute distance 

of mean PSI values of alternate and reference group of 0.05. Based on the selected events, 

we retained 3, 3, 1 and 0 events for analysis. Using an ordinary least squares model with the 

genotypes as factors and the the PSI values as responses, we computed p-values and the 

variance explained by presence of mutations. Multiple testing correction followed the 

Bonferroni method. 

 

To assess the relationship between mutations in the U2 locus upstream of WDR74 and 

global changes in splicing, we used two global splicing statistics. We measured the amount 

of splicing as the number of edges in the splicing graph of a gene in a given samples. All 

splicing graphs were taken from the analyses of the PCAWG Transcriptome Working 

Group39. For each sample, we computed the mean number of splicing edges over all genes, 

resulting in the extent of splicing per sample. We measured the extent of splicing as how far 

each event is outlying from the mean over all event in the same cancer type (encoded by 

project code x histotype). The splicing outlier values per sample and gene were taken from 

the PCAWG Transcriptome Working Group analyses39. The mean over all genes of a 

sample was taken as a statistic for the extent of splicing. 

 

For both statistics, we again used an ordinary least squares model as described above to 

model the relationship between genotype and splicing. As splicing is highly tissue 

dependent, we included the project codes as additional factors, accounting for both tissue 

specificity as well as possible underlying batch effects. To extract the amount of additional 

variance explained through the presence of mutations, we computed one model on project 

codes and presence of mutations and one model on project codes alone. For the model, we 

only included samples of project codes, where we had at least one sample with a mutation 

present, resulting in a total of 618 samples over 14 project codes. 
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19. Structural variation analysis (Morten Muhlig Nielsen, Lars Feuerbach) 

Structural variant data was provided by the PCAWG Structural Variation Working Group. 

The data provide p-values for the observed breakpoint counts in 50kb bins along the 

genome. Candidate elements were overlapped with the bins, and fisher’s method was used 

to calculate a single p-value for each element. The set of element p-values were corrected 

with the FDR method. 
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20. RNA structural analysis (Radhakrishnan Sabarinathan, Ciyue Shen, Chris Sander, 

Jakob Skou Pedersen) 

In order to test if the observed mutations (SNVs) in the RMRP gene are biased towards high 

RNA secondary structure impact, we performed a permutation test by following the steps 

used in oncodriveFML24 together with the predicted structural impact scores from RNAsnp53. 

At first, the RNAsnp was run with the options -m 1 -w 300 and other default parameters to 

obtain the minimum correlation coefficient (r_min) score for each possible mutations in the 

RMRP gene. The r_min scores were then transformed, 1-((r_min+1)/2), to range between 0 

and 1, where 1 indicates high structural impact score.  Further, we followed the steps of 

oncodriveFML (see section ‘oncodriveFML’ for more details) with 1,000,000 randomizations 

and by using per sample mutational signatures (i.e., the probability of observing a mutation 

in a particular tri-nucleotide context in a given sample) to compute the p-value at the cohort 

and sample level. 

 

Furthermore, the RNA secondary structure impact scores (r_min) of indels 

(insertions/deletion) were computed by using a modified version of RNAsnp (since the 

current version of RNAsnp is limited to substitutions only). Briefly, we first computed the 

base pair probability matrices of wild-type and mutant sequences (by taking into account the 

insertion or deletion) and then adjusted the size of matrices to be equal (by introducing 

additional rows and columns with zeros in one of the matrices with respect to insertion or 

deletion). Further, by following the steps of RNAsnp, we computed the r_min score. The 

structure shown in Fig. 6d is based on the conserved secondary structure annotation 

obtained from Rfam (RF00030)54. 

 

Tertiary structure contacts in RMRP were predicted using evolutionary couplings co-variation 

analysis (EC analysis 55) of the multiple sequence alignment of 933 eukaryotic RMRP 

sequences from Rfam (RF00030). The EC analysis (software available at 

https://github.com/debbiemarkslab/plmc) was run with the options -le 20.0, -lh 0.01, -t 0.2, -m 

100 and the top 100 interactions were chosen as predicted contacts, either in secondary or 

tertiary structure, depending on local context. As no experimental 3D structure or cross-

linking experiments of the mammalian RMRP are available, interaction sites were inferred by 

homology to the partially known yeast RMRP crystal structure. We (1) aligned the human 

RMRP sequence with the Saccharomyces cerevisiae RMRP sequence using the sequence 

family covariance model from Rfam and (2) mapped the locations of RNA-protein 

interactions within 4Å56 from the crystal structure and the experimentally determined RNA-

protein crosslinking sites57, and RNA substrate crosslinking sites58 from the yeast sequence 

to the human RMRP sequence. For the crosslinking sites, a ±3 nucleotide window is 
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reported as the interaction site. In order to test if the locations of the observed indels are 

biased towards tertiary structure, protein- or substrate-interaction sites, 1,000,000 

randomizations of five indels were performed assuming uniform distribution of indels across 

the RMRP gene body, and an empirical p-value was calculated (P = .08), showing a 

potential for functional impact. 

 

Two different overlapping deletion calls in the RMRP gene body were observed in the same 

thyroid cancer patient. After manual inspection of the tumor and normal bam files, it was 

found that these calls were based on the same mutational event.  
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21. Cancer associated germline variant distance to non-coding driver candidates. 

(Morten Muhlig Nielsen) 

We used a set of genome-wide significant cancer associated germline SNPs (n=650) from 

the NHGRI-EBI GWAS catalog59 as collected by Sud et al60. We evaluated the genomic 

distance from candidate non-coding drivers to the closest germline variant. All distances 

were above 50 kb with the exception of the TERT promoter which was 1 kb away from a 

coding variant (rs2736098) in the TERT gene.  
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1. Overview of non-coding hotspots in top 50 not categorized in main text 

Six of the 35 non-coding hotspots in top 50 are not assigned to the mutational processes 

described in the main text and highlighted in Fig. 1b. Below we describe these in detail. 

 

Four of the six remaining non-coding hotspots were found on the X chromosome 

(X:116579329, X:7791111, X:83966025, and X:83967552). The mutations in these hotspots 

were mainly contributed by males (61-94% of mutations per hotspot), suggesting the 

possibility of uncaught noise. One of these hotspots is located in palindromic DNA 

(X:7791111). The DNA sequence around this position is composed of two mononucleotide 

repeats of pairing bases (ATTTTTAAAAAAAAAT), which fits our definition of palindromic 

structures (Methods). The sequence context around this hotspot do not match the sequence 

recognized by APOBEC enzymes1 and the hotspot had a low APOBEC signature probability 

(Fig. 1b). It is therefore unlikely to be caused by the same mutational processes as the other 

palindromic hotspots in the top 50 hotspots, but rather likely represents noise associated 

with homopolymer runs (PCAWG variants paper).  

 

A hotspot (3:164903710) contained mutations in multiple cancer types with most mutations 

contributed by Liver-HCC (6/17). It is located about 1 kb downstream of SLITRK3, two base 

pairs from an annotated CTCF transcription factor binding site. CTCF sites and the base 

pairs immediately downstream are known to be highly mutated in several cancer types 

including Liver-HCC. This position is lowly conserved, suggesting that it would not have a 

functional impact2. 

 

The last non-coding hotspot (1:103599442) had a high proportion of mutations attributed to 

the COSMIC5 signature. It overlaps a repetitive LINE region, suggesting potential mapping 
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issues. Moreover, the position is flanked by two other positions, two base pairs away in both 

directions, which also have mutations in the same samples and reads, however these 

positions were called problematic in the Panel-of-Normals (PoN) filter, further suggesting 

mapping issues. 

 

 

2. Discussion of additional significant non-coding elements 

WDR74 promoter 

The WDR74 promoter has already been suggested as a potential driver in several studies3–6. 

However, we found that mutations are concentrated inside a U2 RNA where the density of 

putative polymorphisms is abnormally high. This outstanding level of diversity could in 

principle be due to higher mutability in the germline. However, given the repetitive nature of 

the U2 element (there are hundreds of copies in the genome) and the extreme levels of 

putative diversity, it is more likely that this region is a source of mapping artefacts. This 

observation raise concerns about the validity of WDR74 promoter and, hence, on its 

potential as a cancer driver (Extended Data Fig. 10). 

 

TMEM107 3’UTR 

The case of the TMEM107 3’UTR is very similar to that of the WDR74 promoter. There is a 

small RNA (SNORD118) embedded in the 3’UTR, and is there where most mutations 

concentrate. In PCAWG normals data there is a remarkable excess of putative SNP diversity 

in this element. (Extended Data Fig. 10). 

 

Additional non-coding RNAs hits  

Eleven additional ncRNAs or ncRNA promoter hits, not described in detail in the main text, 

passed the flagging of potential false positive hits (RNU6-573P, RPPH1, RNU12, TRAM2-

AS1, G025135, G029190,RP11-92C4.6 and promoters of RNU12, MIR663A, RP11-

440L14.1, and LINC00963). The driver role of these were generally not supported by 

additional lines of evidence and lacked functional evidence or appeared to be affected by 

technical artefacts. They are described individually below. 

 

RNU6-573P 

The small RNA RNU6-573P is detected in Endocrine pancreas (q = 7.3x10-4) with three 

mutations. However, it appears to be a nonfunctional pseudogene recently inserted in the 

human lineage. Not only the locus, but the wider region is subject to increased mutational 

burden, further supporting that mutational mechanisms or technical issues rather than 

selection underlies the mutational recurrence. 
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RNU12 

RNU12 is a spliceosomal RNA, which was found significant in Lymph-BNHL (q = 5.0x10-2) 

and in the  Hematopoietic system meta cohort (q = 7.0x10-2). The mutation rate is 1.6 times 

higher inside the gene in pan-cancer compared to the flanking regions. However, the 

mutation rate is 4 times higher in gnomAD, which renders it as a likely problematic region. 

Significance in the promoter of RNU12 was also identified in Lymphomas (q = 3.5x10-2) and 

the Hematopoietic system meta cohort (q = 1.8x10-6). But this region is overlapping the 

promoter of POLDIP3 (Polymerase delta-interacting protein 3), which makes interpretation 

difficult. 

 

MIR663A 

The promoter of MIR663A was recurrently mutated in the carcinoma meta cohort (q = 

7.2x10-4). It is the primary transcript of MiR-663, which has tumorigenic functions in gastric 

cancer and nasopharyngeal carcinoma7. The mutation rate is 1.2 times higher inside the 

element compared to the flanking regions, but the mutation rate is 2.4 times higher in 

gnomAD. The mutations were also not correlated with expression. 

 

RPPH1 

RPPH1 forms the RNA component of the RNase P ribonucleoprotein, which matures 

precursor-tRNAs by cleaving their 5’ end8. It is transcribed from a divergent promoter 

together with the protein-coding gene PARP2, however, no association with expression was 

observed for either gene. The region has a high level of germline polymorphisms in normal 

samples indicative of a problematic region to map. 

 

TRAM2-AS1 

The promoter element of the antisense non-coding RNA TRAM2-AS1 is recurrently mutated 

in the Female reproductive system meta cohort (q = 0.10). The promoter is shared with the 

divergently transcribed protein-coding gene TRAM2. Interestingly, the promoter has 8 

mutations in other cohorts, which collectively associate with the expression of TRAM2 (P = 

0.03; carcinoma) but not TRAM2-AS1 (P = 0.9). It is uncertain which gene is controlled by 

this significant promoter element. 

 

G025135 

G025135 is a ncRNA element from MiTranscriptome9 identified here as a significant driver 

candidate in Lymph-CLL (q = 0.01). There are patients with many mutations, indicating that 

an unknown mutation process is at play leading to false driver prediction. 
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G029190 

The G029190 ncRNA is also from MiTranscriptome with significance in Kidney-RCC (q = 

0.04) and in the Kidney meta cohort (q = 0.05). It is located downstream of RAB11FIP3 and 

upstream of CAPN15. A possible function of this gene has not been established. 

 

LINC00963  

LINC00963 was found significant in the Kidney meta cohort (q = 0.04). It has many 

alternative transcripts with different TSSs and thus a large promoter. LINC00963 is known to 

be involved in the prostate cancer transition from androgen-dependent to androgen-

independent and metastasis via the EGFR signaling pathway10. The SNV mutation rate is 

generally high (0.05 mutations per position), although lower than the flanking regions (0.08).  

  

RP11-92C4.6 

RP11-92C4.6 is a predicted antisense ncRNA, which was identified as a significant driver 

candidate in the Breast meta cohort (q = 0.08). It is a short region with low conservation 

containing four SNVs. It is overlapping the COL15A1 protein-coding gene with the upstream 

promoter region. COL15A1 has previously been linked to ovarian cancer. It is unclear 

whether this ncRNA annotation is valid and whether these reflect true functional mutations. 

 

RP11-440L14.1 

The promoter of RP11-440L14.1 was identified as a candidate driver in the Carcinoma meta 

cohort with 14 mutations (q = 5.4x10-3). It has a hotspot position with four mutations 

overlapping two different deletions. The lncRNA is located between CPLX1 and PCGF3. The 

validity of the annotation and possible function for this lncRNA has not been established. 

 

 

3. Evaluation of splicing association of U2 mutations upstream of WDR74  

We hypothesized that the mutations observed in the evolutionarily conserved spliceosomal 

U2 RNA upstream of WDR74 may affect splicing. As prior sequencing evidence, 

summarised in the GENCODE version 19 gene annotations11, shows that the U2 is co-

transcribed as an alternative 5’ exon in some cases, it might play a role in splicing and 

regulation of the WDR74 transcript. We therefore both evaluated (A) whether the mutations 

associate with alternative splicing of the WDR74 gene; and (B) whether they associate with 

transcriptome-wide changes in splicing. 

 

A) We modelled the association of the the somatic mutations with the amount of alternative 
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splicing, as measured by percent-spliced-in values12, using ordinary least squares 

regression, which did not reveal any significant associations. For none of the seven tested 

alternative splicing events (three exon skips, three intron retentions, one alternative 3-prime 

splice site) the genotype was able to explain a substantial fraction of the observed variation. 

The largest R-squared value was 0.01 and no p-value reached nominal significance.  

 

B) A similar result was obtained for the relationship between the presence of U2 mutations 

and global changes in alternative splicing. Modeling the amount of alternative splicing on the 

ICGC project codes alone, which reflect cancer types and contributing institutions, we 

reached an R-squared value of 0.612, reflecting the strong relationship between splicing and 

tissue identity. Including the presence of somatic mutations in the model did not change this 

value. We obtained an analogous result for the extent of alternative splicing, reaching an R-

squared of 0.414 on the project codes alone and the same value when including the 

genotype into the model. 

 

In conclusion, we found no evidence for an association between mutations in the U2 

upstream of WDR74 and alternative splicing of WDR74 transcripts or global changes in 

splicing. 

 

 

4. Enrichment of protein-coding drivers 

Collectively, mutations occurring in the promoter region of the 757 cancer genes did not 

have a significantly different association with expression than synonymous mutations 

(Supplementary fig. 1a). Similarly, promoter and UTR mutations in cancer genes are not 

significantly enriched in LOH with respect to mutations in putative passenger genes 

(Supplementary fig. 1b). This is consistent with the prediction above that only a very small 

fraction of the mutations observed in the promoters and UTRs of known cancer genes are 

genuine driver events. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2017. ; https://doi.org/10.1101/237313doi: bioRxiv preprint 

https://doi.org/10.1101/237313
http://creativecommons.org/licenses/by-nc-nd/4.0/


77 

 
Supplementary figure 1:  a, Expression associated with mutations in coding and promoter 

regions of cancer genes. Z-score expressions associated with non-sense mutations deviate 

significantly from silent mutations, likely through nonsense mediated decay, whereas 

expressions associated with promoter mutations do not differ from that of silent mutations. 

Only mutations in diploid positions were used. b, Excess of LOH associated to mutation in 

regulatory and coding regions of cancer genes. The y-axes shows the ratio of fold changes 

in cancer vs. passenger genes, with fold changes representing the excess or depletion of 

LOH associated with mutation. 

 

 

5. Impact of covariates on the estimation of driver mutations in functional regions of 

cancer genes 

As described in Methods, we estimated the abundance of driver mutations in coding and 

regulatory regions (promoter and UTRs) of 142 known cancer genes using the NBR 

background model fitted on putative passenger genes. 

 

Different covariates were included to improve the fit of the model. The local mutation rate, 

calculated on neutral regions within +/-100 kb around each element, was included to account 

for regional variation of mutation rates. Detection sensitivity (d.s.) was averaged for each 

element using the MuTect estimates of callable sites from each sample. For genes in 

chromosomes X and Y, we did not have MuTect estimates and d.s. was imputed using a 

linear regression model of d.s. as a function of GC content. Detection sensitivity accounts for 

elements where the mutation rate is lower than expected just because of poor sequencing 
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coverage. A third type of covariate was included in the model to account for associations 

between gene expression levels and mutation rates. Starting with a matrix of mean FPKM 

expression values for each gene and tumour type, we log-transformed and scaled the 

expression matrix using pseudocounts and applied Principal Component Analysis to reduce 

the dimensionality. We selected the first 8 components as covariates, which together 

explained 95.5% of the variance. In addition, we added two additional covariates to account 

for non-linearity between expression and mutation rate in the tails of the expression 

spectrum. To accomplish this, we created two binary variables, one marking the 500 genes 

with highest maximum expression values across tumour types, the other marking 1,229 

genes whose expression did not exceed FPKM values of 0.1 in any tumour type. Finally, 

since tumours are rich in amplifications and deletions and these events may result in 

seemingly increased or decreased mutation rates, we included a copy-number covariate, 

calculated as the average copy number of each gene across all PCAWG samples. 

 

We intentionally selected a small set of cancer genes to estimate the abundance of driver 

mutations because with larger numbers of genes the signal of selection becomes weaker 

while any systematic bias may become more prominent. We noticed these biases becoming 

increasingly apparent when analyzing larger sets of genes. In an attempt to capture a 

diverse but relatively small group of cancer genes, we included Cancer Gene Census genes 

recurrently mutated by coding mutations in PCAWG and genes frequently altered by copy 

number gains or losses, as described in Methods. 

 

Supplementary Table 9 shows the impact of using different covariates on the 142 genes 

selected for this analysis. Reassuringly, this shows that the estimates are broadly consistent 

across models with different covariates, with variations typically within the confidence 

intervals of alternative models. This confirms that the overall conclusions are largely 

unaffected by the use of different models. Supplementary Figure 2 shows the results for 

the 142 genes and for a larger set of 603 genes from the Cancer Gene Census.  

 

To evaluate the performance of the NBR model, we compared the number of driver 

substitutions predicted by NBR in the CDS regions of the 142 cancer genes to the number 

predicted by dN/dS (calculated by dNdScv). dN/dS offers an independent estimate of the 

number of driver substitutions in a group of genes using the local density of synonymous 

mutations to estimate the neutral expectation13, instead of predicting the background 

mutation rate by extrapolation from putative passenger genes using a regression model. 

Reassuringly, in these 142 genes, NBR predicts 2,258 (CI95%: 2,127-2,382) driver 

substitutions and dN/dS predicts 2,384 (CI95%: 2,043-2,759). 
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Supplementary figure 2:  Estimation of the excess substitutions (left) and indels (right) in 

regulatory and protein-coding regions of cancer genes and for the 142 (left) genes and a 

larger set of genes from the Cancer Gene Census (right). Ratios of observed vs. expected 

number of mutations (top), the percentage of mutations predicted to be drivers (middle), and 

the total number of predicted drivers in all cancers and in each patient (bottom) are shown. 

 

 

6. Author contributions by category 

 

Driver discovery 

A.L., C.H., C.W., D.A.W., E.K., E.M.L., E.R., G.G., G.T., H.M.U., I.M., J.K., J.R., J.S.P., 

K.A.B., K.D., K.I., L.M., L.U.-R., M.M.N., M.P.H., N.A.S., P.D., P.J.C., R.J., S.B.A., T.A.J., 

T.T. and , Y.F. contributed and curated genomic annotations. C.H., C.W.Y.C., I.M., S.B.A. 

and Y.E.M. contributed randomized mutational data sets for driver discovery. A.L., A.G.-P., 

A.H., D.L., D.T., E.K., E.M.L., E.R., H.H., H.M., I.M., I.R., J.B., J.C.-F., J.D., J.F., J.M.H., 
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J.R., J.Z., K.C., K.D., K.I., L.L., L.M., L.S., L.U.-R., L.W., M.B.G., M.J., N.L.-B., O.P., P.D., 

Q.G., R.S., S.K. and S.S. contributed driver methods and results. E.R., G.G. and G.T. 

implemented results integration. A.K., C.v.M., C.V., G.T., H.H., I.M., J.R., L.F. and M.M.N. 

contributed driver results integration. C.H., C.W.Y.C., E.K., E.R., G.G., J.K., J.M.H., J.S.P., 

M.M.N. and R.I.P. contributed single site recurrence analysis. 

 

Candidate vetting and filtering 

E.R., F.A., H.H., H.T.M., J.K., L.F. and M.M.N. contributed individual candidate filters. A.L., 

C.H., C.W., E.K., E.M.L., E.R., F.A., G.G., G.T., H.H., H.M., H.M.U., J.K., J.M.H., J.S.P., 

K.D., L.F., L.S., M.M.N., M.S.L., N.A.S. and R.J. performed candidate vetting. 

 

Case-based analysis 

E.R., F.A., G.G., H.H., I.M., J.M.H., J.R., J.S.P., K.P., M.M.N. and M.P.H. contributed case-

based analysis. A.G.-P., A.H., A.L., C.H., D.C., D.T., E.K., E.R., F.A., G.G., G.T., H.H., H.K., 

I.M., J.C.-F, J.R., J.S.P., K.I., K.P., L.M., L.S., L.U.-R., L.W., M.A.R., M.B.G., M.M.N., M.S.L., 

N.A.S., N.L.-B., O.P., R.I.P., R.S., S.K. and Y.K. contributed results interpretation. A.K., 

J.S.P., K.A.B., K.-V.L., M.M.N., N.A.F., S.B.A., T.A.J. and T.T. contributed expression 

profiling (extended GENCODE set). A.K., C.V., D.C., H.M., H.T.M., J.R., J.S.P., K.I., L.W., 

M.A.R., M.M.N., M.S.L. and S.B.A. contributed mutation-to-expression correlation analysis. 

A.K., C.V., D.C., J.R., L.W., M.A.R., N.A.S. and Z.Z. contributed network or pathway 

analysis. R.S, Ciyue S., Chris S., and J.S.P. contributed structural RNA analysis. 

 

Power analysis and driver mutations at known cancer genes 

E.R. analysed SNV detection and driver discovery power. I.M. evaluated excess number of 

mutations at known drivers. F.A. and M.M.N. integrated additional evidence. 

 

Leadership and organizational work 

E.R., G.G. and J.S.P. contributed working group leadership. A.G.-P., D.A.W., E.K., E.R., 

G.G., G.T., I.M., J.R., J.S.P., L.F., L.M., M.B.G., N.L.-B., O.P., P.J.C., R.S. and S.K. 

contributed organization.  
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Figure 6

ALB FOXA1 NFKBIZ TOB1SFTPB

 Indel rate (mutations/Mb/patient)

0

2

4

6
N

F
K

B
IZ

 e
xp

re
ss

io
n 

z-
sc

or
e

Ly
m

ph
-B

N
H

L

wtmut.

P = 0.035

Conservation (PhyloP)

TOB1 3’UTR

Exons

Introns

3’UTR

1 kb downstream

36

425

12

41

0

4

7

3

9

4

10

9

2

31

8

0

2

3

9

0

b

c

ALB

Indels

SNVs

a

d
Conservation (PhyloP) 

Indels
SNVs

NFKBIZ 3’UTR

miRNA sites (TargetScan)

Lymph-BNHL events

Indels
SNVs

miRNA sites (TargetScan)
miRNA sites (Ago-Clip)

wtmut.

Mutation type
SNV
Indel
No event

CNA
Amplification
Gain
Loss
No event

Indels

SNVs

e

Gain
Loss
No event

0 30 0 15 0 8 0 4 0 10

P = 0.053

2

0

2

4

T
O

B
1
 e

xp
re

ss
io

n 
z-

sc
or

e
C

ar
ci

no
m

a

chr4: 74,250,000 74,300,000 74,350,000
ALB AFP AFM

Liver-HCC
(n = 314)

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f s
am

pl
es

P = 1.72 x10-14

Other
(n = 2,200)

Indels 

SNVs

RMRP transcript RMRP promoter 

Conservation 
(PhyloP)

Panc-Endocrine: G>C

ins. G>ACGTGG: Liver-HCC

C>U
Stomach-
AdenoCA

Panc-AdenoCA: C>U
Lung-AdenoCA: C>A

G G U U

C

G

U

G

C

U

G

A
A

G

G
C

C
U

G
U

G
C

A
G

G
C

A

GUGCGUG

U

C
C

G C G C A C

C

A
A

C
C A C A

C
G

G

G

G

C

U

C

A

U
U

CU

C

A

G

C

G

C

G

G C U G U

1

10
20

220

230

240

250

260

268

 

Panc-AdenoCA: C>U
Lung-AdenoCA: C>A

Panc-Endocrine: G>C

C>U
Stomach-
AdenoCA

ins. G>ACGTGG: Liver-HCC

ins. G>AG
Liver-HCC

G>U: Liver-HCC

                 A>G:
Panc-AdenoCA

del. G:
Breast-AdenoCa

A>U: Liver-HCC

del. UCCUC
Thy-AdenoCA

G G U U

C

G

U

G

C

U

G

A
A

G

G
C

C
U

G
U

A

U

C
C

U
A

G
G

C
U A C

A
C

A

C

U

G
A

G
G

A C
U

C

UG
U

U
C

C
U

C
CCC

U
U

U

C

C

G
C

C
U

A
G

G
G

G
A

A
A

GUCCCCGGACC
U

C
G

G

G

C

A

G
A

G

A

G
U

G

C

C

A
C

G
U

G
C

AU

A

C G
C

A
C

G
U

A

GAC
AU

U

CCCCGC
UU

C

C

C

A

CU
C

C

A

A

A
G U C

C

G

C

C

A

A
G A

A
G C G

U A

U

C
CCGC

U
GAG

C

G

G

C

G

U

G

G C

G C G G G G
G C

G U C

A

U

C

C

G

U
C
A
G
C
U C C C U C U A

G
U
U
A
C
G

C
A

G
G

C

A

GUGCGUG

U

C
C

G C G C A C

C

A
A

C
C A C A

C
G

G

G

G

C

U

C

A

U
U

CU

C

A

G

C

G

C

G

G C U G U

1

10
20

30

40

50

60

70

80

90

100

110

120

130

140

150 160

170

180

190

200

210

220

230

240

250

260

268

Predicted structural impact 
of mutations

Low HighP4 tertiary interaction sites 
RNA-protein interaction sites 
RNA-substrate interaction sites 

Mutation 
Mutation with predicted 
structural impact (P < 0.1)  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2017. ; https://doi.org/10.1101/237313doi: bioRxiv preprint 

https://doi.org/10.1101/237313
http://creativecommons.org/licenses/by-nc-nd/4.0/


in ou
t in ou
t in ou
t in ou
t in ou
t in ou
t

0.0

1.0

C
an

ce
r a

lle
le

 fr
ac

tio
ns

NEAT1 MALAT1TP53 VHL KRAS BRAF

* ** ***** n.s. n.s.

T
P
5
3

V
H
L

K
R
A
S

B
R
A
F

N
E
A
T
1

M
A
L
A
T
1

LO
H

 a
ss

oc
ia

tio
n 

fo
ld

 d
iff

er
en

ce
 (l

og
2)

−2

0

2

4

6

**

**

n.s.

a

b dc

chr11 NEAT1 MALAT1 10 kb

NEAT1
MALAT1

Indels
SNVs

Indels
SNVs

Tumor suppressor

Oncogene

.s.n .s.n .s.n

e

Gen
om

e

(23
,50

9 g
en

es
)

A
L
B

N
E
A
T
1

M
A
L
A
T
1

2-5
 bp

 en
ric

he
d

(18
 ge

ne
s)

0

50

100
n=1027341 n=563

1 bp
2−5 bp
6−9 bp
10+ bp

Pe
rc

en
ta

ge
 o

f i
nd

el
s

Indel length

f

Figure 7

E
xp

re
ss

io
n 

fo
ld

 d
iff

er
en

ce
 (l

og
2)

−4

−3

−2

−1

0

1

2

3

T
P
5
3

V
H
L

K
R
A
S

B
R
A
F

N
E
A
T
1

M
A
L
A
T
1

** ** ** ** n.s. n.s.

n=31n=139n=485

Exo
ns
Int

ron
s

3’U
TR

1 k
b d

ow
ns

tre
am

5’U
TR

1k
b u

ps
tre

am

M
ut

at
io

n 
ra

te

SNVsIndels

0
2
4
6
8
10

0
2
4
6
8
10
12

Exo
ns
Int

ron
s

3’U
TR

1 k
b d

ow
ns

tre
am

5’U
TR

1k
b u

ps
tre

am

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2017. ; https://doi.org/10.1101/237313doi: bioRxiv preprint 

https://doi.org/10.1101/237313
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b
Figure 8

Average detection sensitivity

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

c

0.5 1.0
0.0

1.0
CDS
Promoters
5'UTRs
3'UTRs
Enhancers
lncRNAs

%
 p

at
ie

nt
s 

w
ith

 T
E

R
T 

pr
om

ot
er

 m
ut

at
io

n

chr5:1,295,228 chr5:1,295,250

0
2
4
6
8

10

M
ut

at
io

ns
/M

b

P
an

ca
n-

no
-s

ki
n-

m
el

an
om

a-
ly

m
ph

 (n
=2

27
8)

C
ar

ci
no

m
a 

(n
=1

85
6)

A
de

no
ca

rc
in

om
a 

(n
=1

63
1)

D
ig

es
tiv

e_
tra

ct
 (n

=7
97

)
Fe

m
al

e_
re

pr
od

uc
tiv

e_
tra

ct
 (n

=3
82

)
Li

ve
r-

H
C

C
 (n

=3
14

)
C

N
S

 (n
=2

87
)

H
em

at
op

oi
et

ic
_s

ys
te

m
 (n

=2
35

)
P

an
c-

A
de

no
C

a 
(n

=2
32

)
B

re
as

t (
n=

20
8)

P
ro

st
-A

de
no

C
a 

(n
=1

99
)

Ly
m

ph
at

ic
_s

ys
te

m
 (n

=1
97

)
B

re
as

t-A
de

no
C

a 
(n

=1
95

)
K

id
ne

y 
(n

=1
86

)
G

lio
m

a 
(n

=1
46

)
K

id
ne

y-
R

C
C

 (n
=1

43
)

C
N

S
-M

ed
ul

lo
 (n

=1
41

)
S

qu
am

ou
s 

(n
=1

21
)

O
va

ry
-A

de
no

C
a 

(n
=1

10
)

S
ki

n-
M

el
an

om
a 

(n
=1

07
)

Ly
m

ph
-B

N
H

L 
(n

=1
05

)
E

so
-A

de
no

C
a 

(n
=9

7)
S

ar
co

m
a 

(n
=9

5)
Ly

m
ph

-C
LL

 (n
=9

0)
C

N
S

-P
ilo

A
st

ro
 (n

=8
9)

Lu
ng

 (n
=8

4)
P

an
c-

E
nd

oc
rin

e 
(n

=8
1)

S
to

m
ac

h-
A

de
no

C
a 

(n
=6

8)
H

ea
d-

S
C

C
 (n

=5
6)

C
ol

oR
ec

t-A
de

no
C

a 
(n

=5
2)

Th
y-

A
de

no
C

a 
(n

=4
8)

Lu
ng

-S
C

C
 (n

=4
7)

U
te

ru
s-

A
de

no
C

a 
(n

=4
4)

K
id

ne
y-

C
hR

C
C

 (n
=4

3)
B

on
e-

O
st

eo
sa

rc
 (n

=4
1)

C
N

S
-G

B
M

 (n
=3

9)
M

ye
lo

id
 (n

=3
8)

Lu
ng

-A
de

no
C

a 
(n

=3
7)

B
ili

ar
y-

A
de

no
C

a 
(n

=3
4)

B
on

e-
Le

io
m

yo
 (n

=3
4)

M
ye

lo
id

-M
P

N
 (n

=2
3)

B
la

dd
er

-T
C

C
 (n

=2
3)

Promoter
5’UTR
3’UTR

lncRNA
Enhancer

CDS

15 14 14 12 9 9 7 7 7 8 7 7 8 7 7 7 6 8 7 10 7 7 6 6 4 8 6 7 7 9 5 7 7 5 5 6 4 7 6 5 4 6
12 12 11 10 8 8 6 7 7 7 6 7 7 7 6 6 5 7 6 9 7 7 6 5 4 7 5 7 6 8 4 7 6 4 5 5 4 6 5 5 4 5
16 16 15 14 9 9 7 7 8 8 7 7 8 7 7 7 5 8 7 11 7 8 6 5 4 8 5 8 7 11 5 7 6 5 5 6 4 6 6 5 4 6
16 16 15 14 9 9 7 7 7 8 6 7 7 7 7 7 5 8 7 11 7 8 5 5 4 8 5 7 6 11 5 7 6 5 5 6 4 6 6 5 4 6
12 11 11 10 8 8 6 6 6 7 5 6 7 6 6 6 5 7 6 9 6 7 5 5 4 7 5 6 5 8 4 6 6 4 5 5 4 6 5 5 4 6
18 17 16 14 10 9 8 8 8 8 7 8 8 8 7 8 6 9 8 12 8 8 6 5 4 9 6 8 7 11 5 8 7 5 5 6 5 7 6 5 4 6

0

60
0

12
00

Median 
element length

0 5 10 15 20 25 30
Minimum % powered (≥90%)

d

e

0.0

1.0 32 70 94 83 52 77 34 4 21 60 59 16 20 7 78 74 27 68 65 91 66 93 60 61 49 100 48

D
et

ec
tio

n 
se

ns
iti

vi
ty

at
 c

hr
5:

1,
29

5,
22

8

% of patients in cohort powered (≥90%)

B
ili

ar
y-

A
de

no
C

a

B
la

dd
er

-T
C

C

B
on

e-
Le

io
m

yo

B
on

e-
O

st
eo

sa
rc

B
re

as
t-A

de
no

C
a

C
N

S
-G

B
M

C
N

S
-M

ed
ul

lo

C
N

S
-P

ilo
A

st
ro

C
ol

oR
ec

t-A
de

no
C

a

E
so

-A
de

no
C

a

H
ea

d-
S

C
C

K
id

ne
y-

C
hR

C
C

K
id

ne
y-

R
C

C

Li
ve

r-
H

C
C

Lu
ng

-A
de

no
C

a

Lu
ng

-S
C

C

Ly
m

ph
-B

N
H

L

Ly
m

ph
-C

LL

M
ye

lo
id

-M
P

N

O
va

ry
-A

de
no

C
a

P
an

c-
A

de
no

C
a

P
an

c-
E

nd
oc

rin
e

P
ro

st
-A

de
no

C
a

S
ki

n-
M

el
an

om
a

S
to

m
ac

h-
A

de
no

C
a

Th
y-

A
de

no
C

a

U
te

ru
s-

A
de

no
C

a

B
ili

ar
y-

A
de

no
C

a

B
la

dd
er

-T
C

C

C
N

S
-G

B
M

C
N

S
-M

ed
ul

lo

C
ol

oR
ec

t-A
de

no
C

a

H
ea

d-
S

C
C

K
id

ne
y-

R
C

C

Li
ve

r-
H

C
C

Lu
ng

-A
de

no
C

a

Ly
m

ph
-C

LL

O
va

ry
-A

de
no

C
a

S
ki

n-
M

el
an

om
a

Th
y-

A
de

no
C

a
0

20

40

60

80

100
2
3

4
15

5
25

9
14

3
4

2
5

7
9

159
171

0
1

0
1

0
1

10
26

0
11

Missed
Called

Missed
Total

Inferred mutations

% of patients 
with mutation

B
la

dd
er

-T
C

C

C
N

S
-G

B
M

H
ea

d-
S

C
C

S
ki

n-
M

el
an

om
a

0
3

1
7

1
3

13
36

P
oi

nt
 m

ut
at

io
ns

 
ob

se
rv

ed
/e

xp
ec

te
d 

ra
tio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Prom
ote

r

5’U
TR

Cod
ing

3’U
TR

3’U
TR

71
 [2

2-
13

3]

32
 [0

-7
9]

10
3 

[2
5-

18
4]

37
 [0

-8
8]

3,133
[2,987-3,273]

do
wns

tre
am

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2017. ; https://doi.org/10.1101/237313doi: bioRxiv preprint 

https://doi.org/10.1101/237313
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figure 1
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Extended Data Figure 5
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Extended Data Figure 6
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