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Abstract

For most complex traits, known genetic associations only explain a small fraction of the narrow
sense heritability prompting intense debate on the genetic basis of complex traits. Joint analysis
of all common variants together explains much of this missing heritability and reveals that large
numbers of weakly associated loci are enriched in regulatory regions, but fails to identify spe-
cific regions or biological pathways. Here, we use epigenomic annotations across 127 tissues and
cell types to investigate weak regulatory associations, the specific enhancers they reside in, their
downstream target genes, their upstream regulators, and the biological pathways they disrupt in
eight common diseases. We show weak associations are significantly enriched in disease-relevant
regulatory regions across thousands of independent loci. We develop methods to control for LD
between weak associations and overlap between annotations. We show that weak non-coding as-
sociations are additionally enriched in relevant biological pathways implicating additional down-
stream target genes and upstream disease-specific master regulators. Our results can help guide
the discovery of biologically meaningful, but currently undetectable regulatory loci underlying a
number of common diseases.

Introduction

Thousands of loci associated with hundreds of complex diseases have been reported in the NHGRI
catalog of genome-wide association studies1 (GWASs). However, replicated genome-wide signifi-
cant loci explain only a fraction of the heritability of complex traits, a discrepancy known as missing
heritability, motivating inquiry into the architecture of complex disease2. Recent work modeling
the joint effect of all SNPs supports a highly polygenic architecture3,4. For example, analysis of
human height shows 16% of the phenotypic variance is explained by genome-wide significant loci,
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but 50% is explained by all SNPs5. Although this line of investigation has shed insight into complex
diseases6,7 further work remains to identify the specific regions implicated.

Recent work also shows most genome-wide significant loci are devoid of protein-coding alter-
ations8 and could instead affect transcriptional regulation. Associated loci are enriched in reg-
ulatory annotations including enhancers delineated by chromatin states9, DNaseI hypersensitive
sites10 (DHSs), enhancer-associated histone modifications11, and large super-enhancers12. More-
over, enrichments persist beyond the traditional genome-wide significance threshold of 𝑝 < 5 ×
10−8, providing a basis for re-prioritizing weak associations13.

Here we use regulatory annotations to go beyond identifying disease-relevant annotations by char-
acterizing specific enhancer regions, their target genes, their upstream regulators, and the biolog-
ical pathways disrupted by weakly associated non-coding variants. We combine and compare di-
verse regulatory annotations spanning multiple cell types, assays, and computational pipelines:
chromatin states, DHSs, gene pathways, and regulatory motifs. We additionally control for a num-
ber of confounders including linkage disequilibrium (LD) between weak associations and overlap
between regulatory annotations.

We carry out these studies in eight large scale meta-analyses of common diseases spanning au-
toimmune, psychiatric, and metabolic disorders. Across these eight diseases, we find thousands
of independent loci are enriched for regulatory annotations in common pathways. We find enrich-
ments for brain enhancers in bipolar disorder and schizophrenia; pancreatic islet enhancers in Type
2 Diabetes; mucosa enhancers in coronary artery disease; and immune enhancers in Type 1 Dia-
betes, Crohn’s disease, rheumatoid arthritis, and Alzheimer’s disease. We show regulatory variants
disrupt both constitutive and tissue-specific enhancer regions predicted by chromatin marks. We
find downstream target genes are enriched in a number of known biological pathways, but only a
small fraction of the genes are already identified by GWAS. We identify upstream master regula-
tors whose binding is indirectly disrupted and show that constitutively marked enhancer regions
disrupted by weak associations may not be constitutively active due to tissue-specific expression
of the upstream transcription factor. Together, our results illustrate an approach to identify many
weakly associated common variants recurrently disrupting a small number of biological pathways
in complex diseases.

Results

Functional enrichment of enhancer annotations

We investigated weak genetic associations (having 𝑝 < 5.3×10−4) with eight well-studied common
diseases spanning a variety of etiologies, pathologies, and genetic architectures for which sum-
mary statistics are publicly available (Supplementary Table 1): Alzheimer’s disease (AD), bipolar
disorder (BIP), coronary artery disease (CAD), Crohn’s disease (CD), rheumatoid arthritis (RA),
schizophrenia (SCZ), Type 1 Diabetes (T1D), and Type 2 Diabetes (T2D).

The key idea of our approach is that the ranking of weak genetic associations gives partial infor-
mation about the true underlying effects which can be used to identify enriched annotations. We
first studied the robustness of the ranks to sample size using summary statistics for RA for which
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per-cohort 𝑧-scores and sample sizes were provided (Supplementary Table 2). We performed six
meta-analyses holding out each cohort in turn and computed the correlation between 𝑧-scores in
the held out cohort with the meta-analyzed 𝑧-scores of the remaining five cohorts. To account
for inflation of test statistics around the Major Histocompatability Complex (MHC), we excluded
chromosome 6. We also verified that the Pearson correlation was greater than 0.99 between our
sample-size weighted meta-analyzed 𝑧-scores of the full study and the published inverse variance
weighted 𝑧-scores. We found positive correlations between association 𝑧-scores on each cohort
through tens of thousands of variants (assuming the original meta-analyzed 𝑧-scores are the true
ranking) despite the fact that each individual cohort had between 483–1525 cases (Supplementary
Fig. 1), supporting our idea that the ranking of 𝑝-values below genome-wide significance is infor-
mative of the ranking which would be obtained by a much larger study.

We next visualized enrichment of regulatory annotations using an approach inspired by Gene Set
Enrichment Analysis14. Briefly, at every rank (𝑝-value) threshold, we computed the difference be-
tween the observed number of overlaps with a regulatory annotation and the expected number,
normalized by the total number of overlaps. Our visualization allows us to identify the relative im-
portance of annotations based on the ordering of the curves and to determine an empirical 𝑝-value
cutoff based on the elbow points of the curves.

We focus on distal enhancer regions because these play a role in transcriptional regulation and are
also dynamic across different cell types, allowing us to propose causal cell types and tissue-specific
biological functions which are disrupted. To define putative enhancer regions, we used a 15 chro-
matin state model15 summarizing five chromatin marks across 127 reference epigenomes span-
ning diverse primary cells and tissues from the Roadmap Epigenomics16 and ENCODE17 projects
(Supplementary Fig. 2) and took the union of enhancer-like states.

We removed variants within the MHC (positions 29.4−33 MB of chromosome 6) plus 5 megabases
flanking from all analyses. Although the MHC is known to play significant roles in diseases such
as T1D, the causal variants in this region are known to be protein coding rather than regulatory,
which is the focus of our study. Moreover, the MHC region displays unusual long range LD which
inflates GWAS test statistics in the flanking regions and would confound our enrichments. In order
to improve our power to detect enrichments, we imputed summary statistics for all studies into the
Thousand Genomes reference cohort (if necessary) using ImpG-Summary18. In order to make our
visualization comparable across different studies, we applied our method to a common set of 5.5
million well-imputed variants.

Applying our method to the eight diseases, we found enrichments for relevant cell types which
persist even when considering thousands of weak associations, equal on average to a cutoff of
𝑝 < 5.3 × 10−4 (Supplementary Fig. 3). To account for linkage disequilibrium between weak
associations, we adapted our visualization to work at the level of loci rather than variants, scoring
each locus as the fraction of SNPs which have the annotation of interest. We pruned the imputed
summary statistics to an average of 207,080 independent loci (pairwise 𝑟2 < 0.1) and found largely
the same enrichments in each of the diseases through an average of 1,600 independent loci (Fig. 1).

In autoimmune disorders (CD, RA, T1D), we found enhancers active in T cell types showed the
strongest enrichment for weak associations. In psychiatric disorders (AD, BIP, SCZ), we also found
enrichment of immune cell types, supporting the role of immune pathways in these disorders19–21.
Interestingly, we found enrichments for B cell types in addition to T cell types in BIP. In BIP and
SCZ, we additionally found enrichment for enhancers in a number of adult brain tissues. In CAD,
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we found enrichments in colonic mucosa, which could be indicative of a role for endothelial cells for
which epigenomic marks were not directly profiled. In T2D, we found enrichments in pancreatic
islets, consistent with prior work22, but additionally in small intestine, consistent with the role of
gastrointestinal mucosa in glucose homeostasis23.

We evaluated the statistical significance of enrichments using a permutation test based on Variant
Set Enrichment24 (Online Methods). Briefly, for each disease and enhancer annotation, we com-
pared the count of associations passing our empirical 𝑝-value cutoff within the annotation against
the null distribution of counts of resampled SNPs passing the same cutoff outside the annotation.
We resampled SNPs matched on LD block size, minor allele frequency, and distance to closest
transcription start site. For each phenotype, we used all well-imputed SNPs (mean 7,797,600) to
avoid small number effects. We found the enrichments reported above were all statistically sig-
nificant after applying the Benjamini–Hochberg (BH) procedure with 𝑞 = 0.05 (Supplementary
Fig. 4); however, many additional cell types also showed significant enrichment attributable to
confounding of constitutive and tissue-specific enhancers as we show below.

Distinguishing constitutive and tissue-specific enhancers

We next sought to distinguish regions which exhibit enhancer-associated chromatin marks con-
stitutively from those which are marked in specific tissues. Prior work has only considered an-
notations learned in individual cell types25, even when building joint models of a number of an-
notations. Here, we used 226 enhancer modules defined as previously described16 to delineate
a biologically meaningful set of disjoint annotations. Briefly, putative enhancers across reference
epigenomes are defined as DHSs (in any reference epigenome) labeled by enhancer-like chromatin
states in each reference epigenome. Enhancer modules are then defined as 𝑘-means clusters of
these regions based on their activity profiles across the reference epigenomes.

We computed enrichments for these enhancer modules and found that constitutive enhancers are
significantly enriched for weak association across all eight diseases (permutation test, BH 𝑞 = 0.05,
Fig. 2). We note that these annotations cover such a small proportion of the genome that we could
not use our visualization method to choose an empirical 𝑝-value cutoff, and instead used the cutoffs
described above.

After partitioning regulatory regions into constitutive and tissue-specific modules, we recover much
fewer significant tissue-specific annotations. Our enrichments are less noisy not only because we
correct for the contribution of constitutive enhancers to all single cell type annotations, but also
because we use narrower, higher confidence regions by combining chromatin accessibility and
histone modification data. We found that immune-specific enhancers are enriched in both autoim-
mune (CD, RA, T1D) and psychiatric disorders (AD, BIP, SCZ) and that brain-specific enhancers
are enriched in psychiatric disorders. We found that mucosa-specific enhancers are enriched in
metabolic disorders (CAD, T2D).

Pathway enrichment of enhancer targets

We next investigated the target genes of enriched tissue-specific enhancer modules harboring weak
associations. Prior work has used hierarchical modeling to study enrichment of weak associations
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in gene pathways26; however, current methods are limited to using proximity to link SNPs to their
target genes, ignoring the regulatory potential of specific variants. We used GREAT27 to test genes
linked to disrupted tissue-specific enhancers (as defined by the enriched modules above) for en-
richment of Gene Ontology Biological Processes and took terms with FDR 𝑞 < 0.05.

We found significant enrichments for a number of known pathways in each of the eight diseases
(Table 1). In autoimmune disorders, we found enrichment for various pathways relating to im-
mune response. However, we identified different specific signaling pathways in each disease:
Immunoglobulin E and Interleukin-4 in CD, nuclear factor kappa-B in RA, and Interferon G in
T1D. Surprisingly, we found enrichment for MHC class I/II processes in T1D despite excluding
the MHC from the analysis. We verified this enrichment was not due to spurious correlations on
chromosome 6. Instead, the enrichment is primarily driven by enhancers linked to CIITA, a known
regulator of the MHC pathways which resides on chromosome 16.

In psychiatric disorders, we recovered several known signaling pathways important to brain func-
tion such as cyclic GMP signaling in AD and glucocorticoid signaling in BIP, and brain develop-
ment such as dendritic spine development in SCZ. We additionally found enrichment for immune
response in AD, further supporting the role of immune pathways in this disease.

In CAD, we found enrichments for cholesterol and triglyceride metabolism, but additionally for
the Immunoglobulin A pathway. In T2D, we found enrichment for pancreatic 𝛽 cell apoptosis, a
known hallmark of the disease.

We note that we recovered known pathways by considering weak associations which overlap dis-
tal regulatory regions rather than genome-wide significant associations which implicate nearby
genes in LD. We used Phenotype-Genotype Integrator (PheGenI) to obtain lists of known genes for
each disease and found that on average we linked putative disrupted enhancers to only 20 known
genes across all enriched pathways for each disease (Supplementary Table 3). The remaining
genes (Supplementary Table 4) are potentially new targets for experimental followup; however,
we cannot assign a 𝑝-value to any particular gene.

Our approach yielded a large number of enriched GO terms and an average of 240 linked genes
in each of the eight diseases. We used ontology relationships to prune the list of enriched terms
to the most specific enriched terms. Briefly, we built a directed acyclic graph where nodes are GO
terms and edges are ontology relationships and took all enriched nodes for which no child was
enriched. Our approach recovered 146–359 enriched GO terms; however, we still recovered some
a priori implausible pathways, possibly due to incorrect linking of enhancers to their target genes.

Motif enrichment of upstream regulators

We next identified the upstream regulators whose binding may be perturbed by weak associations.
Prior work has studied enrichment of regulatory motifs in enhancer regions16,22; however, these
studies do not specifically consider the impact of SNPs on transcription factor binding affinity at
specific motif instances. We studied regulatory motifs curated into 651 families28 and hypothesized
that weak associations may recurrently affect binding of a small number of disease-specific master
regulators by disrupting motif instances of co-factors29.

Briefly, we identified putative master regulators by studying the enrichment of motif instances
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in enhancer modules. We filtered motifs according to sequence enrichment against shuffled in-
stances as previously described28. We then tested for enriched co-occurrence of weak associations
and enriched motifs in each enhancer module using Fisher’s exact test. We finally re-scanned en-
hancer regions containing both a master regulator motif instance and a weak association to find
co-occurring motifs which overlap weakly associated SNPs.

Our approach identified a number of significantly enriched master regulators across the eight dis-
eases (Fisher’s exact test, BH 𝑞 = 0.05, Fig. 3). Only three of the regulators have been previously
identified by GWAS for the eight diseases and reported in PheGenI: ETS1 in RA, STAT3 in CD, and
NFKB1 in SCZ. This result is expected given that the majority of GWAS-identified loci do not impli-
cate protein-coding genes; however, it also illustrates the power of integrating genetic information
with knowledge of the transcriptional regulatory network to identify genes whose biological func-
tion is indirectly disrupted by weak genetic associations.

Several of the putative master regulators play known roles in related phenotypes, giving orthogonal
evidence for their importance in the eight diseases we studied. We identified RFX4 as a master
regulator in BIP; RFX4 regulates circadian rhythm, which is disrupted in BIP30. We identified ERG,
RXRA, and STAT3 in AD. ERG mediates AD-like neurodegeneration in Down’s syndrome31; RXRA
alters brain cholesterol metabolism in AD32; and STAT3 mediates amyloid-𝛽–induced apoptosis,
the classical hallmark of AD33. We identified ELF3 in CD, which is over-expressed in ulcerative
colitis (UC) cases34, supporting prior work suggesting CD and UC share common genetic factors35.
We identified MEF2A in CAD, which has been previously identified in linkage studies of autosomal
dominant CAD36.

Additionally, several of the remaining putative master regulators have known biological functions
which are a priori relevant to the disease they were identified in. We identified REL and ETS1 in
multiple diseases, which are known to play a role in immune response37,38. We identified SPI1 in
AD, consistent with prior work showing an immune basis for AD39. We identified GATA3 in SCZ
and UNCX and TFAP2A in BIP, which are known to play roles in brain development40–42.

We then examined the enhancer regions bound by these master regulators and identified a large
number of putative co-factors whose binding sites are directly disrupted by weak associations (Fig.
4). Moreover, we found that the identified co-factors are specific to both the master regulator and
the disease, offering an explanation for how master regulators can be shared between very different
diseases. For example, although NFKB is enriched in enhancers associated with AD, BIP, CAD, CD,
and SCZ, we found that its motif co-occurs with motifs for e.g. AP1 in AD, HOX genes in BIP, HIC1
in CAD, IRF3 in CD, and SP1 in SCZ.

We note that we identified many master regulators in constitutive enhancers (Supplementary
Fig. 5). One explanation for this result is that we are under-powered to find master regulators
in other enhancer modules which cover less of the genome and overlap fewer well-imputed vari-
ants. However, even allowing for lack of power in other tissue-specific modules, enrichment in
constitutive enhancers runs counter to the hypothesis that different cell type–specific regulators
are disrupted in different complex diseases. We hypothesized that although the enhancers might
be constitutively marked, the transcription factors which bind to those enhancers would show cell
type–specific patterns of expression, explaining their disease specificity. We used RNA-Seq data
across 57 reference epigenomes to study the expression of putative master regulators discovered
in constitutively marked enhancers and found that indeed they showed diverse patterns of expres-
sion (Supplementary Fig. 6). For example, REL, SPI1, and ETS1 are predominantly expressed in
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T cells, consistent with their known tissue-specific functions.

Our results highlight a key distinction between constitutive marking of enhancer-like regions and
constitutive activity of distal regulators. However, we found only few master regulators predicted
for any disease are clearly expressed in only relevant cell types, possibly due to incomplete profiling
of expression across tissues and developmental time points.

Discussion

In this study, we developed methods to study the role of weak, non-coding variants in complex
traits by computing enrichments of weak associations in functional annotations, identifying and
correcting for a number of confounders. Across eight complex diseases, we identified relevant
regulatory annotations and showed that putative regulatory regions harboring weak associations
target relevant downstream genes and are regulated by relevant upstream master regulators. We
found enrichments through thousands of independent loci, inviting criticism that in the limit of in-
finite sample size GWAS will implicate the entire genome43. However, we found that in aggregate
these thousands of independent loci recurrently disrupt only a small number of pathways, sug-
gesting that improving knowledge of the transcriptional regulatory network offers a way forward
in interpreting GWAS.

Our methodology and results highlight two important distinctions in the use of regulatory annota-
tions to identify and re-prioritize weak associations. First, regions marked by enhancer-associated
histone modifications are not necessarily active distal regulators. Here, we attempted to character-
ize putative enhancers by linking them to downstream genes and upstream transcription factors.
Second, regulatory annotations predicted on individual reference epigenomes confound consti-
tutive and tissue-specific marking (and activity) of regulatory regions. We showed that 𝑘-means
clustering of regulatory regions could deconvolve patterns of histone modification across 111 cell
types and tissues, and that measured expression of predicted upstream regulators could decon-
volve enhancer activity across 57 cell types.

Our study has several limitations which should be addressed in future work. Most importantly,
our methodology finds excesses of associations and motifs in specific annotations and pathways
but does not naturally provide measures of confidence for particular loci, genes, or master regu-
lators. We used the BH procedure with 𝑞 = 0.05 throughout to control the false discovery rate
(FDR) of rejected hypotheses by setting a new 𝑝-value threshold; however, this procedure does not
estimate an FDR for each hypothesis. In theory, we could use Empirical Bayes to estimate the FDR
of each hypothesis44. However, our study is arranged as a hierarchy of hypotheses, where the BH
procedure is used to screen first-level hypotheses (enhancer modules), and only those rejected are
taken forward to test second-level hypotheses (motifs, pathways). Therefore, a novel model would
be required to estimate local FDR in our setting, which is beyond the scope of this study. Recent
theory proves that applying the BH procedure in this setting does control the FDR over the en-
tire tree of hypotheses45; however, the actual FDR over all rejected hypotheses (at any level of the
tree) is bounded above by 0.144. Thus, our results should be interpreted as identifying putative
enhancer regions, genes, and transcription factors whose role in disease mechanism needs to be
confirmed by experimental followup.
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We used a heuristic to find a number of of relevant loci and attempted to identify enriched annota-
tions, genes, and regulators without explicitly imposing parametric assumptions about the disease
model or causal cell types. However, a number of Bayesian parametric approaches have success-
fully performed several of these inference tasks13,46,47. In particular, the use of spike-and-slab priors
allows posterior inferences about the number of causal loci, and the use of regulatory annotations
as priors on hyperparameters allow posterior inferences about the importance of different annota-
tions. Importantly, these approaches are either limited to inference on one annotation at a time or
do not account for correlation or overlap between related annotations. Alternatively, the structure
of the problem naturally suggests a Bayesian network connecting SNPs, enhancers, target genes,
and transcription factors; however, such a network directly encodes the transcriptional regulatory
network and must somehow account for tissue-specific differences in the network. Further work is
needed to combine these ideas and perform more rigorous statistical inference on larger scale data.

Our method is unbiased in the sense that we consider all annotations without imposing any prior
information; however, the panel of 127 reference epigenomes we used is itself biased in represen-
tation of tissues, leading to several issues. First, we found unexpected enrichments for mucosa
cell types across a number of the diseases studied which could be explained by epigenomic sim-
ilarity to relevant endothelial cell types which were not directly profiled. However, testing this
hypothesis will require epigenomic profiling of additional cell types. Second, our definition of
a constitutively marked enhancer depends on the proportion of reference epigenomes which the
enhancer is annotated by an associated chromatin state. Blood cell types make up a large propor-
tion of reference epigenomes considered here, and therefore putative constitutive regions might
not actually be constitutive (leaving aside the distinction between enhancer marks and enhancer
activity). Third, enhancer modules in lineages other than blood are smaller than either constitu-
tive or blood-specific modules, making it more difficult to find significant enrichments for these
annotations.

More broadly, our methods use annotations of regulatory regions, genes, pathways, and transcrip-
tion factor binding sites produced by a number of published computational pipelines. These an-
notations could be sensitive to choices of thresholds and filtering used in each of the pipelines,
and therefore our results could also be sensitive to such choices. We took conservative choices in
the design of our computational pipeline with regards to correcting for LD and other confounders.
However, further work will be needed to characterize the error rates in regulatory annotations and
the impact of errors on downstream analyses.

Although we analyzed several million well-imputed variants in each of the eight diseases, we also
used finer resolution, higher confidence predictions of regulatory regions, making it more diffi-
cult to find significant enrichments. Moreover, although we initially found thousands of loci, they
implicate only hundreds of putative enhancer regions of which only a fraction either harbor an
enriched motif and or target a gene in an enriched pathway. Future work will need to use more
comprehensive panels of variants, better predictions of transcription factor binding sites, and bet-
ter predictions of distal targets to increase the number of high-confidence testable hypotheses to
carry forward to experimental followup.
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Online Methods

Genome-wide association summary statistics and regulatory annotations

We downloaded summary statistics for AD from the International Genomics of Alzheimer’s Project
(see URLs); BIP and SCZ from the Psychiatric Genetics Consortium; CAD from the CARDIO-
GRAM consortium; CD from the International Inflammatory Bowel Disease Genetics Consortium;
RA (https://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/
RA_GWASmeta2_20090505-results.txt); T1D from the Type 1 Diabetes Genetics Consortium through
T1DBase48; and T2D from the DIAGRAM Consortium.

International Genomics of Alzheimer’s Project (IGAP) is a large two-stage study based upon genome-
wide association studies (GWAS) on individuals of European ancestry. In stage 1, IGAP used geno-
typed and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs) to meta-analyze
four previously-published GWAS datasets consisting of 17,008 Alzheimer’s disease cases and 37,154
controls (The European Alzheimer’s disease Initiative – EADI the Alzheimer Disease Genetics Con-
sortium – ADGC The Cohorts for Heart and Aging Research in Genomic Epidemiology consortium
– CHARGE The Genetic and Environmental Risk in AD consortium – GERAD). In stage 2, 11,632
SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease
cases and 11,312 controls. Finally, a meta-analysis was performed combining results from stages 1
& 2.

We downloaded ChromHMM segmentations from the Roadmap Epigenomics project; clustered
regulatory regions from the Regulatory Regions Map; genic annotations from the GENCODE project;
CAGE–predicted transcription start sites (ftp://genome.crg.es/pub/Encode/data_analysis/TSS/
Gencodev10_CAGE_TSS_clusters_May2012.gff.gz); predicted motif instances from the ENCODE
project; and motif enrichments (predicted regulators) from the Roadmap Epigenomics project.

Imputation of summary statistics

We downloaded Thousand Genomes (1KG) reference haplotypes in OXSTATS format (September
2013 version, no singletons). We used ImpG-Summary with default parameters and all 1KG sam-
ples to impute summary statistics for BIP, CAD, RA, T1D, and T2D into all SNPs with MAF > 0.01
in 1KG European samples.

In order to assign signs of effects for T1D (for which odds ratios were not published), we imputed
genotypes for the Wellcome Trust Case Control Consortium study of T1D and took the sign from
the single-SNP association test.

We downloaded probe identifiers, hg19 positions, and strand information (http://www.well.ox.
ac.uk/~wrayner/strand/) to convert positions to hg19 and used GTOOL version 0.7.5 to align all
genotypes. We used PLINK version 1.09b to produce hard genotype calls with genotype probabil-
ity threshold 0.99 and remove all SNPs and samples excluded from the original study. We used
SHAPEIT2 v2.r644 (ref.49) to exclude unalignable SNPs and phase the case and control cohorts
independently for each autosome. We used default values for all model parameters.
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We used IMPUTE2 version 2.3.0 (ref.50) to impute into all SNPs and indels with MAF in European
samples > 0.01. We divided the autosomes into 5 MB windows and threw out windows with fewer
than 100 array probes. We used SNPTEST version 2.5.1 (ref.51) to compute association 𝛽-values
using maximum likelihood estimates of an additive model. We included 10 principal components
computed using GCTA 1.24 (ref.52) on the hard-called array genotypes. We made extensive use of
GNU parallel53 to facilitate the analysis.

Visualization of functional enrichment

For each disease and annotation, we compared the observed number of overlaps with the annota-
tion against the expected number of overlaps at each rank threshold (every 1,000 SNPs). Given 𝐾 of
𝑁 total variants overlap a functional region, the expected number of overlaps in the top 𝑛 variants
is 𝐾 × 𝑛/𝑁. We plotted the difference normalized by the total number of overlaps genome-wide.
We used BEDTools version 2.24 (ref.54) to compute overlaps.

To pick an empirical 𝑝-value cutoff, we first computed the convex hull of each curve, then computed
the elbow point as the first inflection point in the convex hull. To compute inflection points, we
approximated the second derivative of the curves by twice taking the difference of adjacent points
normalized by the interval size and took the first point where the second derivative changed sign.
We took the least stringent 𝑝-value cutoff (maximum elbow point) to be the empirical cutoff to carry
forward in the analysis.

Statistical test for functional enrichment

For each disease and annotation, we applied a one-sided permutation test comparing the observed
count of variants in the annotation meeting the new 𝑝-value cutoff against the null distribution
of the analogous counts over 10,000 resampled sets. We resampled variants with replacement (to
reduce memory usage) from outside the regions of interest and matched on number of LD partners
(𝑟2 > 0.1), minor allele frequency (in bins of width 0.05), and distance to nearest transcription start
site (rounded to the nearest kilobase).

We computed 𝑝-values by counting the number of resampled sets with at least as many overlaps
as the original data. We used the Anderson-Darling test to test whether the null distribution was
approximately Gaussian. We reported 𝑧-scores based on the mean and variance of count of overlaps
over the resampled sets. We applied the Benjamini–Hochberg procedure with 𝑞 = 0.05 to control
the false discovery rate.

Controlling for LD

We computed pairwise correlations between pairs of variants in the Thousand Genomes European
samples within 1 megabase and with 𝑟2 > 0.1. We pruned to a desired threshold by iteratively
picking the top-scoring variant (breaking ties arbitrarily) and removing the tagged variants until
no variants remained.
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To adapt our visualization to account for LD between weak associations, we first pruned the list of
imputed variants according to reference LD information to obtain a list of pairwise independent tag
variants with 𝑟2 < 0.1. We then modified the above formulas by summing a fractional haplotype
score over loci instead of counting variants, defined as the proportion of variants in the locus falling
in a functional region. Then, at each rank threshold we compared the observed total score against
the expected score. The expected score was computed as the total genome-wide score multiplied
by the proportion of loci meeting the rank threshold, and the difference was normalized by the
total score genome-wide.

Pathway enrichment of enhancer targets

We used GREAT to test for enrichment of enhancer regions in gene pathways. For each enhancer
module, we defined the foreground as the set of regions containing associated SNPs meeting the
empirical 𝑝-value cutoff and the background as all regions in the module.

We used Phenotype-Genotype Integrator to retrieve a list of known genes for each disease and
matched linked genes in each enriched pathway to known genes based on gene names.

To prune enriched pathways, we downloaded the basic version of Gene Ontology in Open Biomed-
ical Ontologies format and built the specified directed acyclic graph connecting terms to their par-
ents. We performed depth-first traversal of the graph starting from enriched terms and took nodes
which were never reached from a child node as the most specific enriched terms.

Motif enrichment of upstream regulators

For each enhancer module, we first filtered motifs based on sequence enrichment as previously
described55.

For each combination of disease, module, and sequence-enriched motif, we constructed a 2 × 2
contingency table counting enhancer regions partitioned by presence of the motif and orthogonally
by presence of a weak association (based on our empirical 𝑝-value cutoff). We restricted the set
of regions to the domain on which motifs were discovered (excluding coding regions, 3′ UTRs,
transposons, and repetitive regions) and additionally to the subset of regions which harbor an
imputed SNP for the disease. We computed one-sided 𝑝-values using Fisher’s exact test.

For each putative master regulator, we re-scanned regions containing both a motif instance and a
weak association for any motif instances overlapping the associated SNP. We used manual anno-
tation of the motifs to collapse motifs by transcription factor.

We used the transcription factor gene names to visualize expression of the upstream regulators
across 57 reference epigenomes. We normalized the expression RPKM by scaling the maximum
value to 1 in order to put expression of each TF on the same scale.

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/048066doi: bioRxiv preprint 

https://doi.org/10.1101/048066


Code availability

Code used to perform the analysis is available from https://www.github.com/aksarkar/frea and
https://www.github.com/aksarkar/frea-pipeline

URLs

• International Genetics of Alzheimer’s Project http://web.pasteur-lille.fr/en/recherche/
u744/igap/igap_download.php

• Psychiatric Genetics Consortium http://www.med.unc.edu/pgc

• Coronary Artery Disease Genome-wide Replication and Meta-analysis Consortium http:
//www.cardiogramplusc4d.org/

• International Inflammatory Bowel Disease Genetics Consortium http://www.ibdgenetics.
org/

• Diabetes Genetics Replication and Meta-analysis Consortium http://diagram-consortium.
org/

• T1DBase http://www.t1dbase.org/

• Rheumatoid arthritis summary statistics https://www.broadinstitute.org/ftp/pub/rheumatoid_
arthritis/Stahl_etal_2010NG/

• Thousand Genomes reference data (http://mathgen.stats.ox.ac.uk/impute/)

• Roadmap Epigenomics http://egg2.wustl.edu/roadmap/web_portal/

• Regulatory Regions Map https://www.broadinstitute.org/~meuleman/reg2map/

• GENCODE version 10 ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_10/

• GREAT: Genomic Regions Enrichment of Annotations Tool http://bejerano.stanford.edu/
great/public/html/

• Gene Ontology http://geneontology.org/

• Phenotype-Genotype Integrator https://www.ncbi.nlm.nih.gov/gap/phegeni

• ENCODE motifs http://compbio.mit.edu/encode-motifs/
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Table 1: Pathway enrichments of enhancers harboring weak associations. Total gene counts are
based on links to weakly associated enhancers across any significantly enriched pathway. Total
pathway counts are restricted to GO terms with significant enrichments (FDR 𝑞 < 0.05) for which
no child (connected by an ontology relationship) is significantly enriched.

Trait Known pathways Total genes Total pathways
AD Cyclic GMP signaling, immune response 220 216
BIP Glucocorticoid signaling 217 230
CAD Cholesterol/triglyceride metabolism, IgA 248 215
CD CD8 T cell proliferation, IgE, IL4 224 359
RA NFKB, actin nucleation 196 146
SCZ Dendritic spine development 271 183
T1D MHC I/II, JAK-STAT, IFNG 266 245
T2D Pancreatic 𝛽 cell apoptosis 281 177
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Figure 1: Enrichment of independent loci (pairwise 𝑟2 < 0.1) across eight diseases in enhancer
regions predicted by a 15 chromatin state model learned on observed data for 5 histone modifica-
tions across 111 reference epigenomes. Each curve corresponds to enhancer regions predicted in
a specific reference epigenome and is colored by tissue group. The black line at zero cumulative
deviation indicates no enrichment, and the red vertical line indicates the empirical 𝑝-value cutoff
taken forward for the rest of the analysis. A priori relevant enrichments are denoted by opaque
lines.
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Figure 2: Enrichment of weak associations in enhancer modules. Enrichment 𝑧-scores for 226
enriched enhancer modules corresponding to observed histone modification patterns across 111
reference epigenomes. Only 84 significantly enriched modules (BH 𝑞 < 0.05) are shown. Modules
are defined by clustering DHSs labeled as enhancer-like by a 15 chromatin state model learned
on observed data for 5 histone modifications across 111 reference epigenomes. Each module is
represented by a vector of weights per reference epigenome (proportion of DHSs annotated as
enhancer in that reference epigenome). For display, weights are collapsed by tissue group by taking
the maximum weight over all reference epigenomes in each tissue group. Modules are ordered by
the tissue group with maximum weight. The leftmost four modules are defined as constitutive
(having at least 50% of cluster weights greater than 0.25).
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Figure 3: Putative master regulators enriched in enhancer regions harboring weak associations.
The maximum enrichment (log odds ratio) is taken for each master regulator over 226 enhancer
modules comprising patterns of observed histone modification across 111 reference epigenomes.
Only log odds ratios for master regulators with significant enrichment (Fisher’s exact test, BH 𝑞 <
0.05) are shown. Phenotypes are represented by a vector of log odds ratios over each of the master
regulators and ordered by hierarchical clustering.
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Figure 4: Indirect disruptions of master regulators enriched in enhancer regions by weak asso-
ciations across eight diseases. Master regulator gene names are given in larger text compared to
co-factor gene names. Edges connect master regulators to co-factors for which a motif instance
overlaps a weakly associated SNP in an enriched enhancer region and are colored by the associ-
ated phenotype. Edges are collapsed such that each interaction appears at most once.
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