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ABSTRACT 

Background: Recent advances in xenotransplantation in living and decedent humans using pig xenografts 

have laid promising groundwork towards future emergency use and first in human trials. Major obstacles 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 8, 2023. ; https://doi.org/10.1101/2023.06.05.543406doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.05.543406


remain though, including a lack of knowledge of the genetic incompatibilities between pig donors and 

human recipients which may led to harmful immune responses against the xenograft or dysregulation of 

normal physiology. In 2022 two pig heart xenografts were transplanted into two brain-dead human 

decedents with a minimized immunosuppression regime, primarily to evaluate onset of hyper-acute 

antibody mediated rejection and sustained xenograft function over 3 days. 

Methods: We performed multi-omic profiling to assess the dynamic interactions between the pig and 

human genomes in the first two pig heart-xenografts transplants into human decedents. To assess global 

and specific biological changes that may correlate with immune-related outcomes and xenograft function, 

we generated transcriptomic, lipidomic, proteomic and metabolomics datasets, across blood and tissue 

samples collected every 6 hours over the 3-day procedures.  

Results: Single-cell datasets in the 3-day pig xenograft-decedent models show dynamic immune 

activation processes. We observe specific scRNA-seq, snRNA-seq and geospatial transcriptomic changes 

of early immune-activation leading to pronounced downstream T-cell activity and hallmarks of early 

antibody mediated rejection (AbMR) and/or ischemia reperfusion injury (IRI) in the first xenograft recipient. 

Using longitudinal multiomic integrative analyses from blood in addition to antigen presentation pathway 

enrichment, we also observe in the first xeno-heart recipient significant cellular metabolism and liver 

damage pathway changes that correlate with profound physiological dysfunction whereas, these signals 

are not present in the other xenograft recipient.  

Conclusions: Single-cell and multiomics approaches reveal fundamental insights into early molecular 

immune responses indicative of IRI and/or early AbMR in the first human decedent, which was not evident 

in the conventional histological evaluations.  

 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 8, 2023. ; https://doi.org/10.1101/2023.06.05.543406doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.05.543406


INTRODUCTION 

 

 Organ shortages remain a major limitation within human allo-transplantation, with waiting lists greatly 

outpacing the number of donors available. Genetically modified pig organs offer several significant 

advantages for transplantation into humans and may help alleviate the current critical shortage of suitable 

organs 1,2. Advances in ethical research using recently deceased brain-dead human donors, and genetic 

knockout models of key xeno-antigens including alpha1,3-galactosyltransferase (α-1,3-Gal) has enabled 

the first sets of pig to non-human primate xenotransplants to be performed 3,4. 

On September 25 and November 22 2021, pig thymus- kidney (“thymokidney”) xenografts were 

transplanted to two decedents 5 and on September 30th, 2021 an independent group transplanted two pig 

kidneys into a human decedent 6. In June and July 2022 two pig heart xenografts were transplanted into 

two human decedents with the primary aims being to assess the presence of hyper-acute antibody 

mediated rejection and sustained xenograft functioning over a 3-day protocol. The immunosuppression 

regimen did not include costimulatory blockade drugs which are considered essential to support long term 

survival of a xenograft 7,8. The 10-gene-edit pig heart xenografts received by both decedents showed no 

ostensible evidence of cellular or antibody-mediated rejection on conventional histology, or on flow or 

complement-dependent cytotoxicity crossmatches (Moazami et al. in press). Data on systemic responses, 

hemodynamic stability, and cardiac performance were collected over 66 hours post-transplant. Decedent 

1 received a heart that was undersized for the recipient and had a longer cold ischemic time in static 

storage than decedent 2.  The hemodynamics and left ventricular stroke volume of decedent 1 began to 

deteriorate at 30-36 hours after reperfusion, whereas the cardiac function of decedent 2 remained stable 

throughout the study.  Decedent 1 developed an increased need for vasopressors which lead to evidence 

of visceral hypoperfusion including a rising lactate and liver enzymes indicating ischemic injury to end 

organs.  The explant tissue from decedent 1 demonstrated progressive myocyte injury and cell death not 

present in day 1 and 2 endomyocardial biopsies.  This was not observed in the xenograft of decedent 2.  

Standard histology and immunohistology did not show features of hyperacute rejection or antibody 

mediated rejection in either explant or daily biopsies. 

Longitudinal high-dimensional multiomics profiling approaches developed over the last decade have been 

powerful tools for identifying novel biomolecular signatures across a range of biological processes and 

disease states, including obesity, stress, infection, pregnancy, post-transplant outcomes, metabolic 

disease and in extreme physiological states such as prolonged periods of human space flight 9-15. One of 

the key benefits of the longitudinal nature of this approach is that time points from each individual can 

serve as their own internal controls, resulting in orders-of-magnitude gains in statistical power vs standard 

cross-sectional studies11. Moreover, the recent development of single cell geo-spatial transcriptomics 

studies enables accurate assessment of mRNA expression in a given cellular state and cellular 
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composition changes (single cell RNA-seq), in addition to their spatial co-localization and cross-talk 

(geospatial RNA-seq) 16,17,18.  

We performed longitudinal multi-omic profiling to assess the dynamic interactions between the pig and 

human genomes in the first two pig heart-xenografts transplants into human decedents. In attempts to gain 

biological insights into these key xenotransplant procedures, we generated lipidomic, proteomic and 

metabolomics as well as bulk-RNA-seq and single-cell/nuclei RNA-seq and geospatial transcriptomic 

datasets across blood and tissue samples collected throughout the 3-day xenotransplant protocols. To 

assess global changes, we performed system-level analysis through integration of the respective -omics 

datasets. 

 

MATERIALS AND METHODS 

Patient Data and Biospecimens collections: The two human decedents recipients of the pig heart 

xenografts were one male and one female, both of European ancestry. Consent and other regulatory 

protocols, operative procedures, available phenotypes and physiological and clinical outcomes are 

described in detail elsewhere (Moazami et al. in press Nature Medicine). Key biospecimens as well as 

physiological measurements, blood chemistries and other lab values are described in Supplementary 
Table 1. Blood samples were collected at the following timepoints for decedent 1: pre-transplant (0 h) and 

then at 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 65, 66 and 66.5 h (terminal sample) and for decedent 2 at: 0, 

6, 12, 18, 24, 30, 36, 42, 48, 54, 60 and 66 h (terminal sample).  

Transcriptomics: RNA profiling was performed using different biospecimen sources across the two pig- 

to human decedent cardiac xenotransplant procedures, spanning PBMC and fresh-frozen tissue samples 

using multiple methodologies/processes including bulk RNA-seq, targeted RNA profiling, single-cell (sc)- 

and single-nuclei(sn)-RNA-seq and geospatial transcriptomics as described below. Bulk- and scRNA-seq 

was performed on blood samples collected at the timepoints indicated above except for the last three bulk 

RNAseq timepoints of decedent 1 which were collected at 60, 64 and 65 hrs.  

Bulk RNA-seq was performed primarily to assess the concordance with the scRNA-seq as the latter 

methodologies is more prone to batch effect with a smaller number of starting input cells leading to wider 

variance in cell types. These analyses were performed using venous blood collected into PaxGene tubes 

from the decedent and processed as a single batch (all timepoints across both decedents). For data 

analysis, FASTQ files were aligned to GRCh38 GENCODE Human release v43 using STAR v2.7-10a. 

STAR run parameters were adapted from the ENCODE RNA-Seq pipeline for gene count quantification. 

The counts were preprocessed by removing genes with less than an average of 4 counts across all 

samples. Differential gene expression analysis was performed on each contrast using DESeq2. 
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For scRNA-seq of PBMCs we used a standard 10x Genomics scRNA-seq protocol (10x Genomics, CA, 

USA). Initial scRNA-seq data processing was performed using the CellRanger pipeline using the vendor-

recommended workflow. After cell-ranger preprocessing, the count matrices were processed using 

scanpy19. In brief, QC filters were applied as follows: maximum 50,000 counts; maximum 7,000 genes; 

maximum 20% mitochondrial gene expression; minimum 500 genes. Several levels of corrections were 

applied: regression on the number of unique molecular identifiers (UMIs), genes and cell cycle. In addition, 

Harmony20 was used for batch correction, at the subject level (to integrate the two decedents) for main 

cell-type embedding, and at the timepoint level to correct for technical batch-effect for subtypes analysis. 

The counts were normalized and logarithmized. For visualization and clustering, highly variable genes are 

selected using scanpy's dedicated function, and the integrated matrix was scaled. Then PCA and UMAP 

algorithm was applied (including the UMAP knn graph creation). From that knn graph, clusters are 

discovered using the leiden algorithm. Cell-types are discovered based on marker genes and gene set 

enrichment.  

For snRNA-seq the starting material was 4 x 50µm OCT curls, from which nuclei were isolated using 

Chromium Nuclei Isolation Kit (https://cdn.10xgenomics.com/image/ upload/v1660261285/ support-

documents/CG000505_Chromium_Nuclei _Isolation_Kit_UG_RevA.pdf). The isolated nuclei were 

resuspended in 50µl of wash and resuspension buffer, counted using an automated cell counter, and 

immediately loaded into Gel Bead-in-Emulsion (GEMs) as a single replicate and run according to the 

Chromium Single Cell 3' kit (https://cdn.10xgenomics.com/image/upload/v1668017706/support-

documents/CG000315_ChromiumNext GEMSingleCell3-_GeneExpression_v3.1_DualIndex__RevE.pdf). 

For geospatial transcriptomics, we used 10µm OCT sections in duplicate (serial sections processed to 

single nuclei curls). Fixation, hematoxylin and eosin (H&E) staining and imaging for the Visium processing 

was performed using the Visium v1 protocol (CG000239) (https://cdn.10xgenomics.com/image/upload/ 

v1660261285/support-

documents/CG000160_DemonstratedProtocol_MethanolFixationandHEStaining_RevC.pdf). For both 

single-nuclei RNA-seq (snRNA-seq) and geospatial transcriptomics (Visium, 10x Genomics) we first 

embedded a flash frozen samples in Optimal Cutting Temperature (OCT) compound to preserves the 

structure of the pig heart xenograft tissue and to provide support during cryo-sectioning, and they were 

kept at -80oC prior to sectioning. 

For snRNA-seq and geospatial, the raw data was processed using Cellranger with mixed genomes 

(‘Barnyard’ experiment). This enabled the correct labelling and assignment of pig and human nuclei in 

addition to cross-species multiplet removal (Supplementary Figure 1). To ensure the absence of multiple 

alignments, Cellranger was additionally run against the human genome (GRCh38) and pig genome 

(Sscrofa11) separately. For further analysis, the data were partitioned by species. Due to the low number 

of human cells, lenient filtering was applied (100 minimum genes, 200 minimum counts, 20% maximum 

mitochondrial content). For the pig nuclei, we filtered with the following parameters: the maximum number 
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of UMI was 15,000, the minimum number of genes was set to 500, while the maximum set to 4,000, the 

maximum mitochondrial content was set to 5%, and the minimum number of counts deemed acceptable 

was 500). Counts were normalized, logarithmized, highly variable genes selected, with the data corrected 

through regression by number of UMI and mitochondrial content. The same approach then the PBMC 

scRNA-seq was then utilized (PCA, UMAP, Leiden).   

Proteomics: Proteomic profiling for all time points of the plasma samples was performed by 16-Plex 

Tandem Mass Tag (TMT) based Mass Spectrometry (MS). A pool of all samples was used as a reference 

channel across different runs. Protein quantification and QA/QC were performed as previously described 
19. Briefly, in each MS run, Peptide Spectrum Matches (PSMs) without quantification were removed before 

sum normalization with the reference channel. Only PSMs with unique protein groups were selected which 

had a SPS match of >65, and a co-isolation interference of <50. PSMs with a sum of 200 from all 16 

channels were removed. The resulting PSMs were combined into protein groups. Blanks values were 

imputed with the median of the smallest quantity in each run. All four runs were then combined, and the 

ratios of samples to reference channel were calculated.  In total, over 1000 protein groups were identified 

(Supplementary Figure 2). 

Metabolomics & Lipidomics: Sample Preparation Plasma: Metabolites and complex lipids were 

extracted using a biphasic separation with cold methyl tert-butyl ether (MTBE), methanol, and water in 

deep well plate format. Briefly, 1 ml of ice-cold MTBE and 260 μl methanol was added to 40μl of the plasma 

spiked-in with 40 µl deuterated lipid internal standards (Sciex, cat# 5040156). The samples were then 

agitated at 4°C for 30 minutes. After addition of 250 μl of ice-cold water, the samples were vortexed for 1 

minute and centrifuged at 3,800 g for 5 minutes at 4°C. The upper organic phase contained the lipids, the 

lower aqueous phase contained the metabolites, while the proteins were precipitated at the bottom of each 

well. For quality control purposes, 3 reference plasma samples (40 µl volumes), in addition to one control 

sample lacking any sample, were processed in parallel per plate.  For metabolite preparation, proteins 

were further precipitated by adding 500 μl of 1:1:1 acetone: acetonitrile: methanol spiked-in with 15 labeled 

metabolite internal standards to 300 μl of the aqueous phase and 200 μl of the lipid phase, and incubated 

overnight at -20°C. After centrifugation at 3,800 g for 10 minutes at 4°C, the metabolic extracts were dried 

down to completion and resuspended in 200 μl 50/50 methanol/water for Liquid Chromatography–Mass 

Spectrometry (LC-MS) analysis. We examined distribution of metabolites expression and removed one 

outlier sample from decedent 2 due to poor data quality (Supplementary Figure 3). 

Sample Preparation for Targeted Lipidomics. Lipid extracts were analyzed a Sciex platform that comprises 

a 5500 QTRAP system equipped with a SelexION differential mobility spectrometry (DMS) interface (Sciex) 

and a high flow LC-30AD solvent delivery unit (Shimazdu, MD, USA). Briefly, lipid molecular species were 

identified and quantified using multiple reaction monitoring (MRM) and positive/negative ionization 

switching. Two acquisition methods were employed covering 13 lipid classes; Method 1 had SelexION 
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voltages turned on, while Method 2 had SelexION voltages turned off. High data quality was ensured by i) 

tuning the DMS compensation voltages using a set of lipid standards (cat# 5040141, Sciex) after either 

each cleaning procedure, more than 24 hours of standing idle, or 3 days of consecutive use, ii) performing 

a quick system suitability test (QSST) (catalogue # 5040407, Sciex) before each batch to ensure an 

acceptable limit of detection for each lipid class, and iii) triplicate injection of lipids extracted from a 

reference plasma sample (catalogue # 4386703, Sciex) at the beginning of each batch.   

Data acquisition for Plasma Metabolites: Metabolite extracts were analyzed using a broad-spectrum 

untargeted LC-MS platform as previously described21 while complex lipids were quantified using a targeted 

MS-based approach22.  

Untargeted Metabolomics by Liquid Chromatography (LC)-MS: Metabolic extracts were analyzed in 

quadruplicate using HILIC and RPLC separation in both positive and negative ionization modes. Data were 

acquired on a Thermo Q Exactive HF mass spectrometer for HILIC (Thermo Fisher, Bremen, Germany) 

and a Thermo Q Exactive mass spectrometer for RPLC (Thermo Fisher, Bremen, Germany). Both 

instruments were equipped with a HESI-II probe and operated in full MS scan mode. MS/MS data were 

acquired on quality control samples (QC) consisting of an equimolar mixture of all samples in the study 

(global reference pool). HILIC experiments were performed using a ZIC-HILIC column 2.1 x 100 mm, 3.5 

μm, 200Å (Merck Millipore, Darmstadt, Germany) and mobile phase solvents consisting of 10 mM 

ammonium acetate in 50/50 acetonitrile/water (A) and 10 mM ammonium acetate in 95/5 acetonitrile/water 

(B). RPLC experiments were performed using a Zorbax SBaq column 2.1 x 50 mm, 1.7 μm, 100Å (Agilent, 

CA) and mobile phase solvents consisting of 0.06% acetic acid in water (A) and 0.06% acetic acid in 

methanol (B). Data quality was ensured by (i) injecting 6 and 12 pool samples to equilibrate the LC-MS 

system prior to running the sequence for RPLC and HILIC, respectively, (ii) injecting a pool sample every 

10 injections to control for signal deviation with time, and (iii) checking mass accuracy, retention time and 

peak shape of internal standards in each sample.  

Data acquisition for Lipidomics: Lipidomics data were reported by Shotgun Lipidomic Assistant (SLA 

V1.21,23 software which calculates concentrations for each detected lipid as average intensity of the 

analyte MRM/average intensity of the most structurally similar internal standard (IS) MRM multiplied by its 

concentration. Lipids detected in less than 2/3 of the samples were discarded and missing values were 

imputed by drawing from a random distribution of low values class-wise in the corresponding sample. Lipid 

abundances were reported as concentrations in nmol/g. 

Data Processing for Plasma metabolomics: Data from each mode were independently analyzed using 

Progenesis QI software (v2.3) (Nonlinear Dynamics, Durham, NC). Metabolic features from blanks and 

those that did not show sufficient linearity upon dilution in QC samples (r<0.6) were discarded. Only 

metabolic features present in >2/3 of the samples were kept for downstream analyses. Missing values 

were imputed by drawing from a random distribution of low values in the corresponding sample. Intensity 
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drift was corrected. Data from each mode were merged and metabolic features were annotated as follows. 

Peak annotation was first performed by matching experimental m/z, retention time, and MS/MS spectra to 

an in-house library of analytical-grade standards. Remaining peaks were identified by matching 

experimental m/z and fragmentation spectra to publicly available databases including HMDB, MoNA, 

MassBank, METLIN, and NIST using the R package ‘metID’ (v0.2.0). We used the Metabolomics 

Standards Initiative (MSI) level of confidence to grade metabolite annotation confidence (levels 1-3). Level 

1 represents formal identifications where the biological signal matches accurate mass, retention time, and 

fragmentation spectra of an authentic standard run on the same platform. For level 2 identification, the 

biological signal matches accurate mass and fragmentation spectra available in one of the public 

databases listed above. Level 3 represents putative identifications that are the most likely name based on 

previous knowledge. Metabolite abundances were reported as spectral counts.  

Differential expression analysis for proteomics, metabolomics and lipidomics: Data quality was first 

examined using distribution plot. We ran PCA to identify potential batch effect. For normalization, we 

scaled the values to have the same median value using normalizeMedianValues function from the limma 

package (version 3.54.2) followed by log2 transformation. We only considered features with less than 50% 

missing values for the downstream analysis. To assess differential expression, we first grouped time points 

into early (6 and 12h), mid (18 to 36h) and late stages (after 36h). We then performed differential 

expression analysis using a linear model (~ individual + stage) followed by empirical Bayes moderation 

with the limma package.  

Integrative analysis methodology: Processed bulk RNA-seq (PBMC), and cytokine, metabolomic, 

lipidomic and proteomic data from plasma were normalized and scaled to z-scores. Integrative analysis 

was performed using fuzzy c-means clustering to identify multi-omic analytes that had similar temporal 

expression patterns across the heart transplant time course. This was performed for each xenotransplant 

time course independently as well as for combined data. We manually evaluated the downstream multi-

omic clusters for trends that were correlated with clinical events in the time course, and relevant clusters 

were selected for further analysis. To test for pathways enriched in the individual clusters, we performed 

pathway analysis using Metaboanalyst 5.0 (using the joint protein/metabolite analysis function). 

 

RESULTS 

Individual bulk RNA-seq, proteomic, lipidomic and metabolomic datasets: Comparative temporal 

differential expression analysis of bulk RNA-seq, proteomics, lipidomics and metabolomics for blood 

samples of two pig heart to human xenotransplants was performed spanning all timepoints described in 

the Methods section. No significant batch effects were found using PCA analysis for each of the 

proteomics, lipidomics and metabolomics datasets. Figure 1 illustrates the comparative temporal 
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differential expression analyses (DEA) individually for each of the bulk RNA-seq (PBMC), proteomic 

(plasma), lipidomic (plasma) and metabolomic (plasma) datasets. The early phase encompasses the 6hr 

and 12hr post-transplant timepoints, the mid-phase includes 18 h to 36 h post-transplant, while the late 

phase comprises all timepoints beyond 36 h.  

scRNA-seq of longitudinal PBMCs from two human decedents receiving a pig xenograft heart 

We integrated the 26 scRNA-seq samples (14 timepoints for decedent 1 and 12 for decedent 2), to one-

dimension reduction space, and used the resulting Leiden clusters to assign PBMC cell-types (Figure 2A), 

with the dynamic proportion of these cell-types shown in Figure 2B. We confirmed our cell-type 

annotations through marker gene discovery (Figure 2C) and subsequent gene set enrichment analysis. 

Interesting trends for cell-type proportions can be observed, with a strong increase of T and NK cells in the 

later time-points of decedent 1, which is accompanied by erythroblasts, and to a lesser extent, 

granulocytes. Interestingly, this is at the expense of monocyte proportions. A short-lived increase in the B 

cell population can be seen in decedent 1 (Figure 1B). Supplementary Figure 4 shows a comparison of 

the bulk-RNA-seq versus scRNA-seq dataset for specific T and B cells markers. The scRNA-seq cell 

proportion trends in decedents 1 and 2 are confirmed through analysis of PBMC Bulk RNA-seq (sum of 

their markers). 

Thymoglobulin immunosuppression treatment dynamics of T-cell depletion in Decedent 1 and 2: Induction 

immunosuppression for both decedents included rabbit anti-thymocyte globulin (rATG), 

methylprednisolone, mycophenolate, and eculizumab. Both decedents received methylprednisolone 1,000 

mg and rATG 1.5 mg/kg preoperatively; the first decedent received a single dose of rATG 1.5 mg/kg,while 

the second decedent received an additional dose of rATG on postoperative day (POD) 24.5 hours post-

transplant. Both decedents received eculizumab 1,200 mg on POD 0 and 900 mg on POD 1. Maintenance 

immunosuppression consisted of administering 1,000 mg of methylprednisolone daily, 1,000 mg of 

intravenous mycophenolate mofetil twice daily beginning POD 0, which continued until the heart was 

explanted from the decedent at 66 hours post-reperfusion. Figure 3A&B illustrates the proportion of T-cell 

and Natural Killer (NK) cell subtypes overall and across the individual decedent time-courses (the specific 

marker expression for each cell type is shown in Figure 3C). A strong blunting of the all the T-cell subtypes 

down to negligible readings is evident in decedent 2, after the 24.5 hr post-transplant rATG infusion versus 

decedent 1 (who did not receive a second rATG dose), and who was observed to have had a pronounced 

increase in CD4 and CD8 T-cells (Figure 3b). We also deconvolved B-cell subtypes across the two 

xenotransplant time courses (Figure 4A-C). Corresponding to the overall increase in B-cells (Figure 1B) 

we observed that this was largely comprised of B-cells expressing TCL1, a marker that is commonly 

associated with immune tolerance, and to a lesser degree CD70+ B cells. We base cell-type and subtype 

labelling on marker genes (Figure 2C, 3C, 4C) and marker-based gene set enrichment analysis 

(Supplemental Figure 5). A more detailed look into subtype proportion changes (Supplemental Figure 
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6) highlights increase of dividing T cells, FOS+ T cells, Tregs in the later timepoints of patient 1, specifically, 

in addition of a Plasma cell spike going along the B cell spike in patient 1.    

snRNA-seq of pig xenograft heart tissue harvested from human decedent #1 at day 3 
In order to compare the immune response in the blood and tissue, we next performed tissue-specific single-

nuclei RNA-seq (snRNA-seq) (10x Genomics) using flash frozen and isolated nuclei from 4 x 50uM slices 

from right ventricle pig heart xenograft explant tissue at the 66 h timepoint. We used the mixed genome 

alignment method of CellRanger to assign a human/pig label to each nucleus and subsequently removed 

multiplets. We then computationally isolated the nuclei between the pig and human species so they could 

be analyzed independently. We observed that the human nuclei express macrophages and T cells marker 

genes (Supplementary Figure 7), which is evidence of human immune cells infiltrating into the pig heart 

xenograft. For the mapped pig cells, Supplementary Figure 8 shows the main cardiac cell-types 

observed, including cardiomyocytes, vascular endothelial cells (VECs), fibroblasts, immune cells, smooth 

muscle cells, pericytes and Schwann cells. We also identify myofibroblasts, and two hypoxic populations 

(mTORC+ and HIF-1+).  

Geospatial transcriptomics of pig heart xenograft tissue from human decedent #1 at day 3 

For geospatial transcriptomics we used the same OCT tissue section as the snRNA-seq samples. For 

processing, duplicate 10µm OCT tissue sections were analyzed using the Visium v1 platform (10x 

Genomics) as described in detail in the Methods section. We performed a standard clustering of the Visium 

data from the fresh-frozen capture areas and observed 10 broad specific groups of cells (Figure 5A & B). 
Cluster 9 expressed inflammatory/immune related markers such as CCL21, LYVE1, while cluster 6 

markers are almost exclusively human genes (96 out of 100 top markers, based on Wilcoxon ranked-sum 

test) (Supplementary Figures 9 & 10). 

We then used scanpy gene score function to further evaluate cell-type signatures expression on the Visium 

data, from the signatures observed in the snRNA-seq data (Figure 5C). We observe that the capture areas 

in cluster 0 are enriched for fibroblasts, cluster 5 in hypoxic cells, cluster 4 in vascular endothelial cells 

(VECs). Interestingly, we also see an enrichment of EC and VECs markers in cluster 9, which are 

associated with inflammatory signals. By mapping the capture areas on the slides at their location, we can 

assess the spatial distribution of the observed clusters (Figure 5D). Cluster 5 and 7 have a consistent 

location on the bottom and the right of both slides. When focusing on the human cluster 6 and pig 

inflammatory 9 clusters, we identify two trends: the human cells are mostly distributed in hotspots and 

accompanied by inflammatory pig cells.  

H&E stains were also assessed by an expert clinical transplant pathologist. Supplementary Figure 11 (A-

C), in decedent 1, shows coagulative necrosis, which may be indicative of interstitial edema and endothelial 

swelling in a small interstitial capillary. In the same individual endothelial swelling in the intramyocardial 

muscular arteries and perivascular edema is evident along with a ‘lifting’ effect with of detached endothelial 
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layers, although few inflammatory cells are evident. Decedent 2 also has endothelial swelling evident in 

intramyocardial muscular arteries and small interstitial capillaries Supplementary Figure 11 (D-E). 

Pathway Analyses: When focusing on the top 100 marker genes of the human cell cluster 6, we aimed to 

identify these cells and their function in the context of the xenotransplant. We removed the four pig marker 

genes as well as mitochondrial and ribosomal human genes, and subsequently performed over-

representation analyses using enrichr and enrichr-KG 24. The pathway results, summarized 

in Supplementary Figure 12 (top 5 gene-sets by p-value of the 4 gene sets libraries), strongly indicate 

expression patterns consistent with antigen mediated immune response to the graft, with terms such 

as Allograft Rejection, Antigen Processing, Neutrophil Degranulation, Macrophage markers. Other 

enriched pathway terms such as VEGFA-VEGFR2 Signaling and Viral myocarditis may present potential 

interactions between the endothelial cells and cardiomyocytes. The MSigDB Hallmarks gene-sets 

enrichment analyses confirm these observations with Allograft Rejection and Angiogenesis being ranked 

as the 3rd and 4th most significant pathways. To cross-validate the human-cell expression signals from 

both the snRNA-seq and Visium datasets, we co-visualized the Visium cluster six markers with the human 

nuclei RNA signal to and confirm their expression in both independent experiments performed on the same 

tissue (Supplementary Figure 9).  

Endothelial immune response. To echo on the endothelial stress observed on H&E staining 

(Supplementary Figure 11), we assessed the transcriptional identity of endothelial cells from xenoheart 

snRNA-seq (pig cell selections). We identify two distinct clusters of endothelial cells (EC and VECs, 

supplemental figure 8). These clusters both display endothelial cell related pathways from their marker 

genes overrepresentation analysis (GSE, supplemental figure 13), in addition to unexpected immune 

pathways, which are mostly only enriched in the endothelial and immune clusters. These pathways include 

T cell and B cell receptor pathways. We then seek to validate this immune / EC signal in the Visium spatial 

transcriptomics data. First, we use gene-set enrichment on Visium cluster markers and show the 

enrichment of immune related gene sets in cluster 4 (cytokine mediated signaling, neutrophil 

degranulation, supplemental figure 14A). Secondly, we calculate the correlation of lead gene expression 

score (from the immune EC/pathways of supplemental figure 13), and the Visium cluster score. We see 

positive and significant correlation for most of these pathways in cluster 4 (supplemental figure 15A-B), 

confirming their specificity to that cluster. These analyses enable us to confirm the endothelial label of 

Visium cluster 4, through enrichment of cluster 4 gene score with EC / VEC marker gene scores 

(supplemental figure 15C-D), and through the GSE analysis of Visium cluster 4 marker genes (positive 

regulation of angiogenesis, positive regulation of vasculature development, supplemental figure 14A). 

Finally, we see a positive link between the EC / immune signal found in the snRNA-seq, and confirmed in 

the Visium data, with the presence of human cell (supplemental figure 16). Correlation between the 

pathway score of each capture area and their fraction of counts aligning to the human genome, partitioned 
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by Visium clusters, is always positive when significant. Moreover, Visium cluster 4 shows the higher 

number of significant positive correlation out of all Visium clusters. 

 

Pig to human Integration of bulk RNA-seq, proteomic, lipidomic and metabolomic PBMC datasets 

For the PBMC omics datasets, bulk RNA-seq, proteomic, lipidomic and metabolomic datasets from all of 

the same 6-hour timepoints were integrated into a longitudinal analysis to identify multi-omic signatures 

associated with post-xenotransplant phenotypes and outcomes. Omics data from timepoints spanning 

every 6 hours from pre-transplant (0hrs) until 66 hours in xenoheart decedent 1 and 2 were processed with 

no significant batch effects were found using PCA analysis for each of the single omic procedures. The 

resultant datasets were integrated into a longitudinal analysis to identify multiomic signatures associated 

with time post-xenotransplant and other clinical features, using fuzzy c-means clustering after normalizing 

and standardizing the bulk RNA-seq, proteomic, lipidomic and metabolomic datasets into a unified 

integrative data matrix25. Fuzzy c-means clustering showed a number of clear patterns of analyte 

abundance changes over the post-xenotransplant monitoring period. An example of this is illustrated in 

Figure 6 below where, we show common analytes (RNA-seq, proteins, lipids, cytokines and metabolites) 

that show progressively increasing abundance starting at the 42-hour mark post-transplant specifically in 

decedent 1, which track consistently with 3 biomarkers shown across all timepoint: the liver function 

enzymes, alanine transaminase (ALT) and Aspartate transferase (AST) and a metric of clotting time INR. 

This cluster was highly enriched for metabolic processes (glycolysis q < 5x10-13, pyruvate metabolism q < 

5x10-6) lipid metabolism (peroxisome, fatty acid degradation q < 2x10-6) as well as immune response 

(antigen presentation and processing q < 0.01).  

 

DISCUSSION  

Sus scrofa domesticus holds significant promise as a robust source of donor organs that could solve the 

current lack of availability of human heart allografts. Given the novel setting and lack of in vivo data for pig-

to-human heart xenotransplantation, comprehensive molecular profiling over time of individuals receiving 

a pig-derived cardiac transplant will help us better understand how human physiological systems respond 

to xenotransplantation, and how this response is similar to or different from human-to-human heart allo-

transplantation. Here, we have performed the first integrative personal omics profiling (iPOP) of pig-to-

human heart xenotransplantation in a human decedent model. Using a dense time course of blood and 

tissue sampling over a three-day period coupled with large-scale single-cell and bulk multi-omics, we have 

compiled a detailed portrait of the function and dysfunction of biological systems post xenotransplant. 

Overall iPOP profiling shows a markedly different trajectory between the two independent xenotransplant 

experiments, with decedent 1 showing evidence of dysfunction across many different biomolecule types 
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and scales from about 42 hours onwards, whereas decedent 2 exhibits only minor perturbations throughout 

the whole procedure. These findings mirrored the clinical course of the two hearts (Moazami et al in press).  

There are at least 3 possible explanations for the declining function of the first heart: (1) The pig xenograft 

heart was undersized in the first decedent, resulting in an insufficient volume of blood out being pumped 

out of the left ventricle during each systolic cardiac contraction; (2) the heart was deteriorating due to early 

perioperative cardiac xenograft dysfunction (PCXD); (3) post-transplant xenograft dysfunction potentially 

due to early AbMR from minimized induction immunosuppression protocol or (4) injury from the operative 

procedure that necessitated placement of bovine pericardiac patches to both the aorta and anterior 

pulmonary artery in order to bridge size discrepancies between the xenograft heart and the recipient’s 

vessels.   

Due to the novelty of pig-to-human cardiac xenotransplantation, there are no standard guidelines for 

selecting the appropriately sized xenograft organ for a given recipient’s weight and height. Therefore, the 

relatively smaller xenograft heart for decedent #1’s size may have catalyzed systemic hypoperfusion and 

subsequent ischemic injury. In addition, this size mismatch necessitated additional technical steps in the 

operative procedure for implantation, which may have initiated complement activation and worsened 

hypoperfusion of the small xenograft heart. The second possibility, PCXD, when a cardiac xenograft shows 

dysfunction in the first 24-48 hour post-transplant in the absence of rejection26, is postulated to be due to 

a cascade of inflammatory reactions in response to prolonged ischemic time. PCXD is a nonspecific term 

that includes xenograft deterioration from both poor preservation protection resulting in ischemia 

reperfusion and immune mediated injury, most often from non-alpha Gal antibodies26. Many 

xenotransplantation researchers have tried to overcome PCXD by modifying myocardial preservation and 

procurement techniques 27,28.  

Among the responses occurring in decedent 1, we observed a rapid remodeling of both the tissue immune 

microenvironment (spatial RNA-seq and snRNA-seq) and in the circulating immune response (scRNA-

seq), with a rapid induction of B-cells that tapered off and was later replaced with a robust T-cell-mediated 

response. iPOP data also showed a sudden increase of CD4+ T cells along with sCD40L about 42hrs 

post-transplant. This event may have been the beginning of an AbMR process, as CD4+ T cells activate 

B cells via CD40-CD40L interaction. While a number of the molecular pathway signatures from the PBMC 

scRNAseq, xenograft snRNAseq and spatial transcriptomics are consistent with molecular AbMR, the 

conventional histopathology does not show manifestation of these early molecular events. Furthermore, 

the reactive C4d immunohistochemistry stains in cardiomyocytes confirm myocyte injury may be due to 

hypoxia and vascular injury, leading to activation of epithelial mesenchymal transition (EMT) and 

angiogenesis pathways.  

The second dose rATG treatment in decedent 2 may be a potential key intervention that explains some of 

the differences between the dynamic cell-type composition of decedent 1 and 2 over the course of the 3-
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day study. While the early B-cell memory response at 6-12 hours and subsequent T-cell activation in 

decedent 1 is observed at ‘n of 1’ experimental level, it is evident that the trajectory is impacted by a second 

dose of rATG. 

In decedent 1, we observed a continually increasing abundance of a large number of omic biomarkers in 

the blood, starting around the 42 h mark post-transplant. These clusters are highly enriched for metabolic 

processes (glycolysis, pyruvate metabolism), lipid metabolism (peroxisome, fatty acid degradation), liver 

injury as well as immune response (antigen presentation and processing) and necroptosis. This mirrors 

the trajectory of multiple clinical biomarkers for liver dysfunction (prothrombin (INR), alanine transaminase 

(ALT) and aspartase transaminase (AST)) and likely represents the onset of organ failure and consistent 

with the detection of necroptosis pathway activation. Given the significant upregulation of glycolysis-related 

pathways, this may be due to a transition to an acute hypoxic state associated with impaired oxygen 

profusion from the distressed xenograft and vasopressor use.  Of equal importance is the lack of molecular 

signatures for immune activation or tissue injury in the decedent 2. 

While these data represent a novel window into the molecular dynamics during and post 

xenotransplantation, more study is needed. A key limitation of the current study is that only two 

xenotransplants were performed and characterized and only over a 3-day period. These 3-day timeframes 

were initially allowed as this is the typical timeframe that a recently deceased donor with acceptable organs 

for transplantation is maintained while allocation and procurement proceed. Extending the timeframe of 

these pig-to-human decedent xenotransplants to a month would add significant value in determining a 

prolonged period of immune-response and would allow different immunosuppression regimes to be 

assessed.  

It is well established in the xenotransplantation field that costimulatory blockade drugs are essential for the 

successful protection of xenografts. The absence of costimulatory blockade drugs in the minimized 

immunosuppression regime of these two human decedents receiving a pig heart xenograft would be 

considered suboptimal to support long term survival of a xenograft. The longitudinal transcriptomic 

datasets from the first decedent are likely explained by the lack of costimulatory blockade. It is note that 

the second treatment of rATG at 24.5 hours in second decedent had a pronounced positive effect on the 

subsequent immune-cell proportions. In conclusion, we present a wealth of multi-omic data that lays the 

groundwork for future studies in larger cohorts of humans receiving xenotransplants. Dense longitudinal 

sampling was necessary for clearly delineating the trajectories of many of these analytes and indicate the 

value of detailed molecular monitoring to be performed on all future xenotransplantation cases. 

 

FIGURES AND LEGENDS 
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Figure 1: Comparative temporal differential expression analysis of individual omics analyses. Bulk 

transcriptomics, proteomics, lipidomics and metabolomics for blood samples of two pig heart to human 

xenotransplantation spanning 26 timepoints are displayed. The early phase encompasses the 6 h and 12 

h post-transplant timepoints, the mid-phase includes 18 h to 36 h post-transplant, while the late phase 

comprises all timepoints beyond 36h. For each panel, the x-axis represents the fold change in log2 scale, 

and the y-axis depicts the -log10 transformed unadjusted p-value. The individual omics are as follows: (A) 
Transcriptomics: DEA analysis using DESeq2 is limited to genes whose average expression exceeds 4 

counts across samples. Genes with significant expression changes (FDR<0.01) are highlighted in red 

(absolute log2FC>1) or blue (logFC below cutoff). Only the top 10 most significant genes were labeled due 

to space limitation. (B) Proteomics: The analysis was limited to proteins present in more than half of the 

samples, yielding a total of 895 proteins. Proteins with significant changes (FDR < 0.05) are highlighted in 

red (absolute log2FC > 1) or blue (logFC below cutoff). (C) Metabolomics: DEA was performed for 459 

metabolites. Metabolites with significant changes (FDR < 0.001) are marked in red (absolute log2FC > 2) 

or blue (logFC below cutoff). (D) Lipidomics: The analysis included 720 lipids. Lipids showing significant 

changes (FDR < 0.001) are denoted in red (absolute log2FC > 0.5) or blue (logFC below cutoff). In the 

metabolomics and lipidomics panels, only the top 5 features are highlighted with the molecule names. In 

all panels, molecules without significant changes are represented in gray. 

 

 
Figure 2: Cell-type diversity from PBMC scRNA-seq, across timepoints and patients. A. Low dimension 

embedding representation of the PBMC scRNA-seq data, colored by cell-types. B. Proportion 

(percentages) of each cell-type between samples/timepoints for patient 1 (left) and patient 2 (right). D. 

Expression distribution of selected marker genes of the main cell-types, basis for their identification. 
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Figure 3: T and NK subtype diversity from PBMC scRNA-seq, across timepoints and patients. A. Low 

dimension embedding representation of the T/NK cells, colored by subtype. B. Proportion (percentages) 

of each subtype between samples/timepoints for patient 1 (left) and patient 2 (right). The value represents 

percentage of the cell-type among all cells of the sample. D. Expression distribution of selected marker 

genes of the subtype, basis for their identification. 
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Figure 4: B cell subtype diversity from PBMC scRNA-seq, across timepoints and patients. A. Low 

dimension embedding representation of the B cells, colored by subtype. B. Proportion (percentages) of 

each subtype between samples/timepoints for patient 1 (left) and patient 2 (right). The value represents of 

the cell-type among all cells of the sample. D. Expression distribution of selected marker genes of the 

subtype, basis for their identification. 
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Figure 5: Geospatial transcriptomic analysis of pig and human cells in xenotransplanted tissues. In Visium 

cluster analysis, ten broad specific capture area groups are identified (A). Cluster 9 expressed 

inflammatory/immune related markers such as CCL21, LYVE1, while cluster 6 markers are almost 

exclusively human genes (B). Visium data cell-type signatures expression evaluation vs snRNA-seq data 

(C). We observe that the capture areas in cluster 0 are enriched for fibroblasts, cluster 5 in hypoxic cells, 

cluster 4 in vascular endothelial cells (VECs). Interestingly, we also see an enrichment of EC and VECs 

markers in cluster 9, which appears to be associated with inflammatory signals. By mapping the capture 

areas on the slides at their location, we can assess the spatial distribution of the observed clusters (D). 

 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 8, 2023. ; https://doi.org/10.1101/2023.06.05.543406doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.05.543406


 
Figure 6: Integrative clustering of transcriptomics, proteomics, metabolomics, lipidomics cytokines from 

sera of 2 human decedents receiving a pig heart xenograft. Integrative clustering of bulk RNA-seq, 

proteomics, metabolomics, lipidomics and cytokines using fuzzy c-means clustering across all timepoints 

reveals an upregulated cluster of analytes at late timepoints that correlated with the indicated clinical 

variables (INR, AST, ALT). A) shows data for the first xeno timecourse, while B) shows data for the second. 

The different omics subtypes are color-coded as indicated in the legend. C) shows significant pathways 

associated with the indicated cluster. 
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