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SUMMARY 

Determining genes orchestrating cell differentiation in 
development and disease remains a fundamental goal of cell 
biology. This study establishes a genome-wide metric based 
on the gene-repressive tri-methylation of histone 3 lysine 27 
(H3K27me3) across hundreds of diverse cell types to 
identify genetic regulators of cell differentiation. We 
introduce a computational method, TRIAGE, that uses 
discordance between gene-repressive tendency and 
expression to identify genetic drivers of cell identity. We 
apply TRIAGE to millions of genome-wide single-cell 
transcriptomes, diverse omics platforms, and eukaryotic 
cells and tissue types. Using a wide range of data, we 
validate TRIAGE’s performance for identifying cell-type 
specific regulatory factors across diverse species including 
human, mouse, boar, bird, fish, and tunicate.  Using 
CRISPR gene editing, we use TRIAGE to experimentally 
validate RNF220 as a regulator of Ciona cardiopharyngeal 
development and SIX3 as required for differentiation of 
endoderm in human pluripotent stem cells. A record of this 
paper’s Transparent Peer Review process is included in the 
Supplemental Information. 

INTRODUCTION 

Cellular identity is controlled by an interplay of regulatory 
molecules that cause changes in gene expression across the 
genome (Morris and Daley, 2013). Histone modifications 
(HMs) activate or repress genes to guide cell decisions 
during differentiation and homeostasis via mechanisms that 
are partially conserved across species  (Alexanian et al., 
2017; Boyer et al., 2006; Margueron and Reinberg, 2011; 
Nakamura et al., 2014). HMs have been found to be 
structurally and functionally linked to cell type specific 
genome architecture and gene regulation (Cahan et al., 
2014; Rehimi et al., 2016). Histone 3 lysine 27 
trimethylation (H3K27me3) is a chromatin mark deposited 
by the polycomb repressive complex-2 (PRC2) to suppress 
expression of genes (Margueron and Reinberg, 2011). The 
interplay of epigenomic control of gene expression by 
H3K27me3 and other activating histone marks, such as 
H3K4me3, guide cell lineage decisions to derive specific 
functional cell types (Van Handel et al., 2012). 
Computational methods using genome-wide measures of 
chromatin state and gene expression can therefore enable 
efficient prediction of genes controlling cell decisions 
(Benayoun et al., 2014; Rehimi et al., 2016; Whyte et al., 
2013). These strategies have played critical roles in 
advancing fields of cell biology to inform the genetic basis 
of cell reprogramming and differentiation (Takahashi and 
Yamanaka, 2006).  

Here, we demonstrate that a computational method 
formulated using the repressive tendency via H3K27me3 
strongly predicts genes controlling cell differentiation 
decisions. The method draws on the principle that cell 

differentiation decisions are mediated in large part by 
selective epigenetic repression of regulatory genes 
(Stergachis et al., 2013). Genes that are repressed in many 
cell types are likely to play a key regulatory role for the rare 
cell types in which the gene is expressed. When measured 
across diverse cell types, the selective absence of broad 
H3K27me3 domains can therefore be used to predict cell 
type-specific genetic regulators. We show that the method 
can analyze millions of heterogeneous cell transcriptomes 
simultaneously to infer cell type-specific regulatory genes 
from diverse animal species. The approach we take departs 
from and complements analyses that require two or more 
relevant cellular conditions to be assayed. Instead, we draw 
on the cellular diversity represented in existing consortia 
epigenetic data as a background to evaluate genome-wide 
features of genetic regulation sourced from individual cell 
types. Analytical tools like this that evaluate patterns of 
genome regulation in the context of cellular diversity will 
enhance our capacity to understand the mechanistic basis of 
cellular heterogeneity in development, homeostasis and 
disease conditions. 

RESULTS 

Cell type specific regulatory genes have broad 
H3K27me3 domains in diverse cell types  

We set out to test the hypothesis that analyzing the genomes 
of diverse cell and tissue types could be used to determine 
variation in epigenetic control of genes underpinning cell 
differentiation. We used NIH Epigenome Roadmap data 
(Kundaje et al., 2015), which contains ChIP-seq analysis of 
H3K4me3, H3K36me3, H3K27me3, H3K4me1, H3K27ac 
and H3K9me3 from 111 tissue or cell types (Table S1). To 
associate HMs with genes, we linked the single broadest 
HM domain based on overlap with a RefSeq gene-body plus 
2.5kb upstream of its transcriptional start site (Figure S1A). 
For each HM, we found that the top 100 genes associated 
with the broadest domain were remarkably consistent 
between cell types (Figure S1B), however, broad domains 
of different HMs marked distinct sets of genes (Figure 
S1C).  

We next assessed the breadth of histone domains in each of 
111 samples as they correlate with genes that control cell 
type-specific functions. To establish a positive gene set for 
cell type-specific regulatory genes, we populated a list of 
634 variably expressed transcription factors (VETFs) 
having a coefficient of variation greater than 1 across 46 
NIH Epigenome Roadmap RNA-seq data sets (Perez-Lluch 
et al., 2015) (Table S2). We used Shannon entropy to 
quantify cell type specificity (Schug et al., 2005) and 
demonstrate that VETFs are significantly more cell type-
specific, compared to non-VETFs (p=4.31e-230, Wilcoxon 
rank-sum test, one-tailed) or protein coding genes (p=1.55e-
108) (Figure 1A inset) and their expression is more 
negatively correlated to the H3K27me3 breadth (Figure 
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S1D). We showed that VETFs are highly consistent with a 
set of 713 tissue specific TFs independently identified from 
233 tissue groups (p<2.2e-16, hypergeometric test) 
(D'Alessio et al., 2015). Taken together, VETFs provide a 
positive gene set where their enrichment is a performance 
metric for identifying cell type-specific regulatory genes. 

To calculate the enrichment of cell type-specific regulatory 
genes as they relate to HM domains, all HM domains 
assigned to genes were ranked by breadth and analyzed 
using Fisher’s exact test to assess enrichment of VETFs. 

These data show that broad H3K27me3 domains are 
strongly enriched for VETFs (Figures 1A, S1F), consistent 
with a correlation between repression of VETFs and breadth 
of H3K27me3 domains (Figure S1E). Further supporting 
this, unsupervised analysis of genes marked by the broadest 
H3K27me3 domains are uniquely enriched in morphogenic 
and developmental regulators (Figure 1B). These 
regulatory genes have broad H3K27me3 repression in many 
cell types to preclude them from being mis-expressed and 
therefore providing an epigenetic control mechanism 

 

Figure 1: Tissue and cell type-regulatory genes are associated with broad H3K27me3.  

(A) Variably expressed transcription factors (VETFs) are strongly associated with broad H3K27me3 domains. Genes 
(n=26,833) are associated with a single broadest proximal histone modification (HM) domain and ranked by the breadth 
of the associated HM domain across 111 NIH Roadmap Epigenomics Project tissue or cell types. Genes are grouped into 
percentile bins. Mean enrichment of VETFs with the 95% confidence interval is shown (y-axis). p=6.66e-16 at top 5% 
broadest H3K27me3 domains by Fisher’s exact test, one-tailed.  

(B) Gene Ontology (GO) biological process enrichment of top 200 genes most frequently associated with top 5% broadest 
HM domains across 111 cell types (Fisher’s exact test, one-tailed). H3K27me3 broad domains are enriched for cell 
regulatory genes.  

(C) Gene expression level (left) and the H3K27me3 domain breadth (right) for selected cardiac-specific regulatory genes 
and structural genes across 18 Roadmap tissue samples; Heart (E095, E104, E105), Brain (E070, E071, E082), Epithelial 
(E057, E058, E059), Blood (E037, E038, E047), ES cell (E003, E016, E024) and ES-derived (E004, E005, E006). Gene 
expression distinguishes cardiac-specific genes whereas the selective absence of H3K27me3 broad domains 
distinguishes cardiac-specific regulatory genes from structural genes.  

(D) HM depositions in a cardiac regulatory gene NKX2-5 and structural gene MYH7 (-2.5kb upstream of the TSS to 
+25kb downstream). Data are ranked based on the size of histone domain with 111 Epigenome Roadmap cell types 
stacked vertically. Consistent deposition of broad H3K27me3 domains across diverse cell types demarcates cell type-
specific regulatory genes from structural genes.  
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controlling their expression. Taken together, this 

 

Figure 2: Genes governing development are frequently associated with broad H3K27me3 domains.  

(A) Schematic diagram showing steps for using 111 NIH Roadmap Epigenomics samples to calculate the repressive 
tendency score (RTS) for protein coding genes. 

(B) (Top) Distribution of the RTS. Red dashed line is the inflection point on the interpolated curve (RTS=0.03) above 
which genes exhibit increased RTS (n=1,359). (Bottom) GO biological process enrichment in genes ranked by the RTS 
(Fisher’s exact test, one-tailed) (Table S4 for the full list).  

(C) High RTS ranked genes are associated with cell/tissue specificity. Each rank bin includes 100 genes and used to 
calculate the proportion of cell types where a given gene is expressed (RPKM>1). The average proportion is calculated 
for each rank bin with the 95% confidence interval shown.  

(D) High RTS genes tend to be lowly expressed. Each rank bin includes 100 genes and the average expression value for 
each bin is shown with the 95% confidence interval. 

(E) Variably expressed transcription factors (VETFs) are significantly associated with a high RTS (for example, p<2.2e-
16 at the first rank position (top 1%), Fisher’s exact test, one-tailed). Each rank bin includes 1% of all RefSeq genes with 
RTS (n=26,833). Red dashed line shows the uniform distribution (proportion=0.01).  

(F) High RTS genes are enriched in regulators of development and disease processes across all organ systems (Table S4 
for the full list).  Each rank bin includes 1% of all RefSeq genes (n=26,833). Asterisks indicate significant enrichment 
of a given GO term within the top 10% genes (Benjamini-Hochberg FDR<0.05, Fisher’s exact test, one-tailed). 
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demonstrates that H3K27me3 broad domains as measured 
across diverse cell and tissue types provides a strategy to 
enrich for cell type-specific regulatory genes.  

To illustrate the distinctive enrichment of H3K27me3 in 
regulatory genes as opposed to structural or housekeeping 
genes, we extracted expression and chromatin data from 
cardiomyocytes (Figure 1C-D). The transcript abundance 
of cardiac regulatory transcription factors (i.e. GATA4, 
GATA6, NKX2-5, TBX5 and TBX20) and structural 
sarcomere genes (i.e. MYH6, MYH7, MYL2, MYL3 and 
TNNI3) are all elevated in cardiac cells compared to other 
cell types, but cannot be distinguished as regulatory or 
structural genes except by differential expression (Figure 
1C). In contrast, in all cell types except the heart, 
H3K27me3 domains broader than 30kb consistently 
identify cardiac regulatory genes from structural genes 
(Figure 1C). No other HM analyzed demarcates cell type-
specific regulatory genes from structural genes in this 
manner (Figures 1D, S1G). This establishes the rationale 
that genes having cell type-specific regulatory functions can 
be identified based on the frequency of H3K27me3 across 
the locus in heterogeneous cell types.  

The repressive tendency of a gene defines a genome-wide 
metric predictive of cell type-specific regulatory genes  

We established a simple, quantitative logic that leverages 
the significance of broad H3K27me3 domains for 
distinguishing regulatory genes: Broad H3K27me3 domains 
occurs predominantly over critical cell type-specific 
regulatory genes; depositing this mark sets the default gene 
activity to “off” such that cell type-specific expression 
requires selective removal of H3K27me3 (Boyer et al., 
2006; Lee et al., 2006). Conversely, genes with 
housekeeping or non-regulatory roles rarely host broad 
H3K27me3 domains.  

To implement this concept, we calculated for each gene in 
the genome across 111 NIH epigenome cell and tissue types 
(i) the total lengths (breadths) of H3K27me3 domains in 
base-pairs and multiplied this by (ii) the proportion of cell 
types in which the gene’s H3K27me3 breadth is within the 
top 5% of broad domains (Figure 2A); this is justified on 
the basis of the 4~8% thresholds that show similar, high 
level of recovery of regulatory factors (Figures 1A and 
S2A). This analysis assigns a single value to every gene we 
call its repressive tendency score (RTS) that defines its 
association with broad H3K27me3 domains (Table S3). 
Using the NIH Epigenome Roadmap data, the RTS is 
calculated for 99.3% (or 26,833 genes) of all RefSeq genes. 
To demonstrate that this formulation is agnostic to the 
composition of cell types, we note that for all genes, the RTS 
is within one standard deviation of the mean of 
bootstrapping empirical distribution derived from 10,000 
re-samplings of cell types. We note that the 111 cell types 
provide sufficient sample size to calculate a stable RTS, 

independent of the peak calling method to define 
H3K27me3 domains (Figure S2B-C), with over 85% of 
assigned H3K27me3 domains overlapping only a single 
protein-coding gene (Figure S2D). Using a subsampling 
approach, we show that the RTS can be calculated from 
approximately as few as 60 randomly selected but distinct 
cell and tissue types (Figures S2F-G). The gene-centric 
measure is an aggregate of broad H3K27me3 domains 
around each gene across diverse cell types. Making use of 
the recently released EpiMap data comprising 18 genome-
wide features from 834 cell and tissue types (Adsera et al., 
2019), we show that RTS is highly consistent regardless of 
whether the input samples are comprised of cell lines, 
embryonic or adult samples, or healthy and diseased cell 
types (Figure S2H).  

Using RTS values above the inflection point (RTS>0.03) of 
the interpolated RTS curve, we identified a priority set of 
1,359 genes. These genes show significant enrichment for 
cell type-specific, lowly expressed regulators of cellular 
diversification including organ development, pattern 
specification and multicellular organismal processes 
(Figure 2B-D). Among the 1,359 priority genes, we 
identified enrichment of VETFs (odds ratio=13.85, p=3.2e-
151, Fisher’s exact test, one-tailed), homeobox proteins 
(Zhong and Holland, 2011) (odds ratio=37.42, p=7.98e-
135) and KEGG signaling genes (Kanehisa and Goto, 2000) 
(odds ratio=2.66, p=1.73e-13) (Figure 2E). The priority set 
also comprises non-coding RNAs including known 
regulators of development such as FENDRR and HOTAIR 
(Grote and Herrmann, 2013; Rinn et al., 2007). 
Furthermore, genes with high RTS values are enriched in 
regulators of biological processes including gastrulation and 
organ morphogenesis, and comprise members of major 
signaling pathways, and genetic determinants of diverse 
pathologies including cardiovascular disease, diabetes, 
neurological disorders and cancer (Figure 2F, Table S4). 
Additionally, we evaluated the biological significance of 
perturbing genes with a high or low RTS by analyzing an 
independent data-resource containing 714 transgenes 
(including 481 TFs) conditionally over-expressed in hESCs 
subsequently analyzed by RNA-seq or microarray (Figure 
S3A) (Nakatake et al., 2020). Overexpression of TRIAGE 
priority genes resulted in a significantly higher number of 
differentially expressed genes, showing greater perturbation 
of the transcriptome, compared to non-priority genes 
(p≤0.0001, two-tailed) (Figures S3B-C). This suggests that 
genes with high RTS are regulators of cell identity. Ranking 
genes based on RTS is a simple strategy to enrich for genetic 
factors controlling cell type-specific differentiation and 
function.  

Applying the RTS to orthologous gene expression data 
infers regulatory genes of that cell  

The transcriptome of a cell is comprised of diverse cell type-
specific structural, housekeeping and regulatory genes. The 
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expression of regulatory genes, such as transcription factors 

 

Figure 3: TRIAGE: an unsupervised strategy to infer cell type-specific regulatory factors from gene expression 
input alone.  

(A) Schematic illustrating TRIAGE analysis of gene expression input data to generate a discordance score (DS) for 
prioritization of genes based on regulatory potential from orthologous gene expression data set.    

(B) Regulatory genes with broad H3K27me3 domains (in base-pairs) as exemplified by selected tissue type-specific 
regulatory, structural, and housekeeping genes. 

(C) TRIAGE prioritizes tissue type-specific regulatory genes and reduces the relative abundance of housekeeping and 
structural genes.  Average expression values (Exp.) from selected GTEx tissue samples transformed by TRIAGE (Dis.). 
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(TFs), is difficult to detect, and changes are harder to 
quantify due to their typical low abundance, relative to 
structural and housekeeping genes. To enable genes to be 
ranked based on their regulatory potential, we sought to 
calculate an adjusted abundance measure for a gene that 
accounts for the gene’s expression level observed in a 
foreground population of cells or single cell, and its 
tendency of being epigenetically repressed across a 
background of cell types. For any gene i the product 
between its expression value (𝑌𝑌𝑖𝑖) and repressive tendency 
score (𝑅𝑅𝑖𝑖 ) gives rise to its discordance score (𝐷𝐷𝑖𝑖 ). This 
defines a method we call TRIAGE (Transcriptional 
Regulatory Inference Analysis of Gene Expression): 

𝐷𝐷𝑖𝑖 = ln (𝑌𝑌𝑖𝑖 + 1) ∙ 𝑅𝑅𝑖𝑖 

The discordance score (DS) represents a gene’s tendency to 
be epigenetically repressed and the observed transcriptional 
abundance of that gene in orthologous input gene expression 
data. TRIAGE does not require an index cell type reference; 
instead it uses the repressive tendency collected from a 
diverse spectrum of cell and tissue types, to linearly amplify 
or attenuate the measure of gene abundance from any 
orthologous input sample (Figures 3A, S2E, S3D-E).  

As expected, analysis of cell-specific genes across 111 NIH 
Epigenome Roadmap samples shows that H3K27me3 broad 
domains reproducibly mark regulatory genes as opposed to 
structural or housekeeping genes (Figure 3B). Using RNA-
seq data transformed with RTS, we show that TRIAGE 
efficiently reduces the relative abundance of structural and 
housekeeping genes, while enriching for regulatory genes in 
a cell type-specific manner (Figures 3C, S3F). TRIAGE 
transformation of 46 Roadmap RNA-seq samples results in 
enrichment of tissue or cell type-specific TFs among the top 
1% in every cell type while it reduces the relative abundance 
of housekeeping genes (Figure 3D). Analysis of the 
Pearson correlation distances between Roadmap tissue 
types (Scornavacca et al., 2011) shows that TRIAGE 
increases the similarity between samples from the same 
tissue by ~29% when compared to distances calculated 
using absolute expression levels (Figure S3G).   

 

RTS identifies cell identity genes from diverse tissues 
and species 

Genetic mechanisms that control cell decisions are highly 
evolutionarily conserved. Using inter-species gene 
mapping, we tested whether TRIAGE could identify 
regulatory drivers of heart development across diverse 
chordate species including mammals (i.e. Homo sapiens, 
Mus musculus, and Sus scrofa), bird (Gallus gallus), fish 
(Danio rerio) and in  vertebrate tunicate (Ciona robusta) 
(Figure 3E). In contrast to expression alone, TRIAGE 
accurately recovered cardiac regulatory genes across all 
species. More broadly, we used TRIAGE to enrich for 
relevant tissue morphogenesis biological processes from 
diverse cell types and species including arthropods (Figure 
3F). While TRIAGE is currently devised using human 
epigenetic data, these data show that TRIAGE can be used 
to identify regulatory genes from cell types that are 
conserved across the animal kingdom.  

RTS analyses infer regulatory control points of disease 

Cell differentiation decisions in development are commonly 
re-activated in disease contexts to drive cell differentiation 
decisions in response to cell stress (Rajabi et al., 2007). 
Indeed, analysis of high-RTS genes shows enrichment in 
disease-related KEGG pathways and ClinVar disease terms, 
including both congenital and acquired disorders (Figure 
S4A). Next, we used TRIAGE to analyze two disease data 
sets: single-cell RNA-seq data of melanoma (Tirosh et al., 
2016), and RNA-seq data of hearts where pre-established 
heart failure (transverse aortic constriction, TAC) was 
treated with JQ1, a small molecule BET inhibitor known to 
prevent pathological cardiac remodeling (Anand et al., 
2013; Duan et al., 2017). We show that among the top 
ranked genes, TRIAGE consistently prioritizes genes with 
known involvement in skin development and melanoma 
pathogenesis using independently derived positive gene sets 
(Tirosh et al., 2016; Verfaillie et al., 2015) (Figure S4B-C), 
as well as enrichment of stress-associated gene ontology 
pathways (Figure S4D-E). TRIAGE-based ranked genes 
highlighted the potent anti-fibrotic effect of JQ1 without the 
use of a canonical differential expression analysis (Figure 
S4E). While disease responses are complex and involve de 

(D) Across 46 Roadmap Epigenomics samples, TRIAGE significantly enriches for VETFs (p<2.2e-16, Fisher’s exact 
test, one-tailed) but reduces the proportion of housekeeping genes (p<2.2e-16, Wilcoxon rank-sum test, one-tailed) at 
top 1% RTS rank position. Average values from Roadmap cell types are shown, with the 95% confidence interval scale 
bar.  

(E) TRIAGE enriches for regulators of heart development (GO:0007507) among genes ranked by the TRIAGE 
discordance score (DS) (red) compared to original expression (cyan) in cardiac RNA-seq samples from diverse animal 
species (Fisher’s exact test, one-tailed).  

(F) TRIAGE enriches for tissue-specific developmental GO terms among top 100 genes ranked by the DS (red) compared 
to original expression (cyan) across diverse animal species (Fisher’s exact test, one-sided). Hyphen (-) indicates no data 
set available. 
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novo chromatin changes not represented in the reference 
healthy cell and tissue types collated in the Epigenome  
Roadmap, these data demonstrate that TRIAGE can provide 
a strategy to study mechanistic processes in disease.  

 

TRIAGE provides a unique vantage point into genomic 
data  

We compared the data analysis pipelines of TRIAGE with 
various benchmark genomic analysis methods that also rely 
on reference to epigenetic information including functional 
heterogeneity (FH) analysis (Rehimi et al., 2016), 
H3K4me3 broad domains (Benayoun et al., 2014) and 

 

Figure 4: TRIAGE identifies unique genomic regulatory features that complement those of other methods.  

(A) Schematic diagrams of computational approaches to infer cell identity genes using epigenomic and/or transcriptomic 
data with TRIAGE, FH Score, H3K4me3, or super-enhancers.  

(B) Venn diagrams demonstrate that different epigenetic prediction methods capture distinct gene sets across multiple 
tissues.  

(C) Receiver operating characteristic (ROC) plots indicate that TRIAGE consistently recovers tissue-specific regulatory 
genes. Area under curve (AUC) values are shown on the right bottom corner of the plot.  

(D) TRIAGE improves on super-enhancers prioritizing genes for developmental and morphogenesis process across 
diverse cell and tissue types.  
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super-enhancers (Jiang et al., 2019; Whyte et al., 2013)  

 

Figure 5: TRIAGE enables analyses of large single-cell and multi-omics data sets. 

(A) RNA-seq analysis of cardiomyocytes based on RNA expression (left) and gene discordance scores after TRIAGE 
analysis (right) where genes are ordered by their expression. TRIAGE reveals known cardiac regulators that are lowly 
ranked based on original input gene expression.   

(B) Top 10 genes ranked based on their RNA expression (left) and TRIAGE (right) analyses of hiPSC derived 
cardiomyocytes (Friedman et al., 2018).  

(C) Distribution of selected groups of genes, including housekeeping, heart signaling (genes with the heart development 
term GO:0007507 and at least one KEGG signaling pathway term), sarcomere (genes with the sarcomere term 
GO:0030017) and heart TFs (TFs with the heart development term GO:0007507) when ranked by their RNA expression 
value (left) and gene discordance score after TRIAGE analysis (right). Each rank bin includes 1% of all expressed genes 
in the data set. Enrichment of a given group is calculated for each rank bin relative to all genes (Fisher’s exact test, one-
tailed).  
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(Figure 4A). TRIAGE is unique among these analysis 
approaches by requiring only gene expression data without 
the need for epigenetic sequencing input. Notably, 
comparison of the overlap of genes prioritized by these 
approaches across different tissue types reveals largely non-
overlapping genes sets (Figure 4B, Table S5). For example, 
among genes identified within each method, TRIAGE 
distinctively detects the largest number of cardiac 
transcription factors, many known to be central regulators 
of cardiac morphogenesis including IRX4, GATA5, TBX5, 
MSX1, and EOMES (Figure 4B) (Russ et al., 2000; 
Takeuchi and Bruneau, 2009; Waardenberg et al., 2014). 
Consistent with this, TRIAGE performs well when 
compared with these methods in terms of sensitivity and 
precision at identifying cell type-specific regulatory genes 
(Figures 4C-D, S5A-D, Tables S6-8). These data 
demonstrate that TRIAGE captures gene sets distinct to 
other epigenetic analysis strategies and therefore provides 
an effective and complementary approach for evaluating 
genomic data in coordination with routine analysis pipelines.  

RTS reveals the mechanistic basis of cell heterogeneity 
at single-cell resolution  

Recent developments in barcoding and multiplexing have 
enabled scalable analysis of thousands to millions of cells 
(Cao et al., 2019). Determining mechanistic information 
from diverse cell subtypes captured using single-cell 
analytics remains a challenge. TRIAGE does not require 
epigenetic data for a cell of interest, making it applicable to 
any bulk or single-cell transcriptomic data input.  

We analyzed 43,168 cells captured across a 30 day time-
course of in vitro cardiac-directed differentiation from 
human pluripotent stem cells (hPSCs) (Friedman et al., 
2018). Analysis of day-30 cardiomyocytes using standard 
expression data show high abundance genes dominated by  
housekeeping and sarcomere genes, whereas TRIAGE 

efficiently identifies cardiomyocyte regulatory genes 
including NKX2-5, HAND1, GATA4, IRX4 (Figure 5A-B). 
Notably, TRIAGE retains highly expressed cell type-
specific structural genes providing an integrated readout of 
genes involved in cell regulation and function (Figure 5C). 
We used TRIAGE to simultaneously convert single-cell 
expression data comprising ten different cell subpopulations 
spanning gastrulation stage, progenitor and definitive cell 
types (Figure 5D). In contrast to expression data, which 
significantly enriches for structural and housekeeping 
genes, TRIAGE consistently identifies gene sets associated 
with developmental regulation of diverse and biologically 
distinct subpopulation through differentiation (Figures 5E, 
S6A-B). We show that differential expression analysis 
results in outcomes that depend heavily on the comparison 
cell type, whereas TRIAGE identifies population-specific 
regulatory genes without external reference comparisons 
(Figure 5F). Lastly, we show that TRIAGE predictions are 
not explained merely by prioritizing expressed TFs (Figure 
S5E-F, Table S9), indicating the capability of TRIAGE to 
filter out housekeeping TFs that do not govern cell type-
specific functions. 

TRIAGE is applicable to diverse omics data types and 
scales to large single-cell data sets 

We tested the utility of TRIAGE using different genomic 
and proteomic data types. Using the Tabula Muris data of 
nearly 100,000 cells from 20 different mouse tissues at 
single-cell resolution (Schaum et al., 2018), TRIAGE 
consistently enriches for cell type-specific regulatory genes 
compared to original expression with no difference between 
droplet and smartseq2 data sets (Figure 5G, Table S10). 
Analysis of the mouse organogenesis cell atlas (MOCA 
(Cao et al., 2019)) data demonstrates that TRIAGE 
prioritizes cell type-specific regulatory genes in a scalable 

(D) Analyses of single-cell RNA-seq over a time course of cardiac differentiation from pluripotency by clustering of 
cells from RNA expression (left) and TRIAGE (right). 

(E) During in vitro mesendoderm differentiation (y-axis) RNA expression enriches for structural and housekeeping 
genes, and TRIAGE enriches for Gene Ontology’s Biological Process terms related to cell type-specific regulatory 
developmental processes (Fisher’s exact test, one-tailed).  

(F) TRIAGE (red) enriches for developmental terms among top ranked genes compared to expression (blue) or 
differential gene expression (green or purple).  

(G) TRIAGE enriches for VETFs across diverse scRNA-seq sequencing platforms (i.e. Smart-seq2 or Droplet 10X 
chromium) and scales to analyze millions of cells in the mouse organogenesis cell atlas (MOCA). Genes are sorted by 
either RNA expression or TRIAGE, and then grouped into a percentile bin. Enrichment of VETFs for each sample is 
summarized by the most significant p-value (y-axis) at the corresponding rank bin position (x-axis).  

(H) TRIAGE accurately clusters scRNA-seq data compared to original RNA expression data evaluated using ground 
truth analysis captured using Mixology data sets (Tian et al., 2019). 

(I) TRIAGE used for analysis of diverse data types and separation of VETFs where gene expression is quantified, 
including CAGE-seq, proteomics, and H3K36me3 tag density.  
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manner across more than 1.3 million mouse single-cell  
transcriptomes (p<2.2e-16, Wilcoxon rank-sum test for both 
median significance and rank, one-tailed, Figure 5H). 
Lastly, we evaluated single-cell clustering accuracy based 
on ground truth (Tian et al., 2019) to assess the performance 
of TRIAGE using three independent algorithms (i.e. CORE, 
sc3, and Seurat). We show no difference in accurately 

assigning cells to the reference (ARI > 0.98) using original 
expression or TRIAGE transformed expression (Figure 5I).  

We hypothesized that TRIAGE could be used to study any 
genome-wide quantitative measurement of gene expression. 
We applied TRIAGE to 17,382 GTEx (v8) samples 
covering diverse cell and tissue types (Lonsdale et al., 
2013). Compared to original expression values, TRIAGE 

 
Figure 6: TRIAGE as an engine for gene discovery. 

(A) Top 10 genes ranked by RNA expression (left) and TRIAGE (right) from day-2 in vitro hPSC-derived mesendoderm, 
highlighting SIX3 as a candidate gene identified by TRIAGE.  t-SNE plot shows percentage of cells expressing SIX3 and 
gene expression level of SIX3 in different single-cell derived subpopulations. Genes labeled as “novel” have not been 
implicated in this process to the best of our knowledge. 

(B) Corn plots showing the spatial domain of SIX3 expression in the germ layers of E5.5-E7.5 mouse embryos. Positions 
of the cell populations (‘‘kernels’’ in the 2D plot of RNA-seq data) in the embryo: the proximal-distal location in 
descending numerical order (1 = most distal site) and in the transverse plane of the germ layers: endoderm, anterior half 
(EA) and posterior half (EP); mesoderm, anterior half (MA) and posterior half (MP); epiblast/ectoderm, anterior (A), 
posterior (P) containing the primitive streak, right (R)- anterior (R1) and posterior (R2), left (L) – anterior (L1) and 
posterior (L2).  

(C) Breadths of H3K27me3 domains (in base-pairs) associated with SIX3 gene across 111 Epigenome Roadmap samples. 

(D) Schematic overview of SIX3 gene targeting by CRISPRi for conditional knockdown (KD) showing the position of 
gRNAs blocking CAGE-defined TSS of SIX3.  
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prioritizes genes with tissue specific developmental 
functions (Figure S7A-B, Table S11). This finding is 
consistently observed across diverse omics data types that 
measure gene abundance. For example, TRIAGE 
outperforms original abundance metrics when measuring 
chromatin methylation for H3K36me3, a surrogate of RNA 
polymerase II activity deposited across gene bodies (Barski 
et al., 2007) collected from the 111 Roadmap samples 
(Table S12, Figure 5J). We used data from FANTOM5 
(D'Alessio et al., 2015; Forrest et al., 2014) to analyze cap 
analysis of gene expression (CAGE), a measure of genome-
wide 5’ transcription activity. These data showed TRIAGE 
enriches for tissue-specific TFs (Figures 5J, S8A-C, Table 
S13) as well as tissue-specific GO biological process terms 
compared to CAGE input data (Table S14). Lastly, analysis 
of a draft map of the human proteome shows that TRIAGE 
enriches for regulatory drivers of 30 different tissue types 
from high resolution Fourier transform mass spectrometry 
data (Kim et al., 2014) (Table S15). These findings 
illustrate that TRIAGE predicts regulatory drivers of cells 
using diverse genome-wide multi-omic endpoints.   

TRIAGE for novel gene discovery 

We set out to demonstrate TRIAGE as an engine for gene 
discovery. We used a multi-step strategy involving analysis 
of TRIAGE-derived discordance score, RTS, and prior 
literature to identify candidate genes governing cell 
differentiation (Figure S9A). We focused on transcription 
factors and signaling molecules which are known to act as 
upstream regulators of broad gene networks guiding cell 
differentiation decisions. Using data from single-cell 
analysis of cardiac differentiation  (Friedman et al., 2018) 
we analyzed day 2 subpopulations and identified diverse, 
known regulatory genes governing mesendoderm cell 
differentiation (Figure 6A). Among the TRIAGE identified 
genes was SIX3, a member of the sine oculis homeobox 
transcription factor family (RTS=0.54) (Figures 6A-B, 

S9A-B). Though the r  ole of SIX3 in neuroectoderm 
specification has been studied extensively, little is known 
about its role in other germ layer derivatives (Carl et al., 
2002; Lagutin et al., 2003; Steinmetz et al., 2010). Analysis 
of SIX3 in hPSC in vitro cardiac differentiation shows 
robust expression in day 2 mesendoderm cell populations 
(Figures 6C, S9C-D). We analyzed the spatiotemporal 
transcriptional data from germ layer cells of mouse embryos 
(Peng et al., 2016), spanning pre-gastrula stages (E5.5) to 
late-gastrulation (E7.5) mouse embryos (Figure S9E). 
Spatio-temporal expression of SIX3 is observed in the 
epiblast and neuroectoderm (Carl et al., 2002; Lagutin et al., 
2003; Steinmetz et al., 2010) as well as early endoderm 
lineages (Figures 6D, S9F). We also identified SIX3 as a 
gene detected in a study of 434 individuals with brain 
development abnormalities (holoprosencephaly) with 8% of 
individuals found to have congenital heart disease. A patient 
with deletion of SIX3 was diagnosed with dextrocardia 
(Tekendo-Ngongang et al., 2020), a condition where the 
heart develops properly except its position is reversed in the 
body further suggesting a potential direct or indirect role for 
SIX3 in governing critical mesendoderm cell differentiation 
decisions.  

To test this hypothesis, we established CRISPRi loss-of-
function hPSCs in which SIX3 transcription is blocked at its 
CAGE-defined transcription start site (TSS) in a dox-
dependent manner (Figures 6E-F). Cells were 
differentiated and analyzed at day 2 (Figure 6G). We found 
that SIX3 loss-of-function depleted endoderm and pan-
mesendoderm genes (n=6-14 technical replicates per 
condition from 3-6 experiments) with FACS data indicating 
specific depletion of CXCR4+/EPCAM+ endoderm cells 
(n=12-16 technical replicates per condition from 4-5 
experiments) (Figures 6H-K, S9G, S10). In contrast, genes 
marking various mesodermal lineages (pan-mesoderm, 
paraxial mesoderm and lateral mesoderm) were either not 

(E) qPCR analysis of SIX3 transcript abundance in control (con) vs SIX3 CRISPRi KD iPSCs (DOX) (n=6-14 technical 
replicates per condition from 3-6 experiments).  

(F) Schematic of hiPSC directed in vitro cardiac differentiation protocol.  

(G) Day-2 FACS analysis of endoderm markers EPCAM/CXCR4 between control and dox-treated conditions in SIX3 
CRISPRi KD iPSCs and WTC GCaMP CRISPRi iPSCs are shown (n=12-16 technical replicates per condition from 4-
5 experiments). SIX3 CRISPRi KD iPSCs show significant (p<0.001) reduction in EPCAM+/CXCR4+ cells compared to 
dox-treated control iPSCs (WTC GCaMP CRISPRi).   

(H) qPCR analysis showing significant decreases in endoderm and mesendoderm markers and increases in mesoderm 
markers, respectively, in SIX3 CRISPRi KD iPSCs compared to control (n=6-14 technical replicates per condition from 
3-6 experiments).  

(I) Analysis of cardiomyocytes by FACs for α-actinin at day 15 of in vitro differentiation. Changes in α-actinin+ cells 
between control and dox-treated conditions in SIX3 CRISPRi KD iPSCs and WTC GCaMP CRISPRi iPSCs are shown 
(n=6 technical replicates per condition from 3 experiments). SIX3 CRISPRi KD iPSCs show no change in α-actinin+ 
cells compared to dox-treated control iPSCs (WTC GCaMP CRISPRi). 
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affected or upregulated upon loss of SIX3 (Figure 6H). 
Consistent with this, FACS analysis of alpha-actinin+ 

cardiomyocytes on day 15 of differentiation showed no 
difference between SIX3-knockdown cells compared to 
dox-treated controls (n=6 technical replicates per condition 
from 3 experiments) (Figures 6L-N, S9H). Taken together, 
this finding provides the first evidence linking SIX3 to 
mesendoderm cell differentiation and situates this gene into 
mechanisms of cardiac malformation that are consistent 
with genetic defects in endoderm that are known to cause 
heart patterning defects (Viotti et al., 2012).  

Lastly, we used TRIAGE to identify previously unknown 
developmental regulators in a distant chordate species, 
Ciona robusta. Single cell RNA-seq data comprising cell 
subpopulations captured across a time-course of cardiac 
development were analyzed with TRIAGE using a 
customized gene mapping tool to link human to Ciona genes 
(Figure 6O) (Wang et al., 2019). The top ranked genes 
based on TRIAGE were analyzed (Figures 6P, S9A). 

RNF220 (RTS=0.30, Figure 6Q), an E3 ubiquitin ligase 
governing Wnt signaling pathway activity through β-
catenin degradation (Ma et al., 2014), was identified as a 
regulatory gene not previously implicated in 
cardiopharyngeal development. Utilizing CRISPR control 
vs. RNF220-knockout, we demonstrate that Mesp lineage 
progenitors of control animals form the expected ring of 
pharyngeal muscle progenitors around the atrial siphon 
placode, whereas RNF220-knockout embryos showed 
morphogenetic defects (n=100) (Figures 6R-S). 
Collectively, these data illustrate that TRIAGE identifies 
functional regulatory determinants; we demonstrate how  
TRIAGE can support discovery of previously unknown 
biology and mechanisms of development.  

DISCUSSION 

TRIAGE builds on the prevailing view that the epigenome 
guides cell regulatory processes. The selective absence of 
broad H3K27me3 domains at promoters is first established 

 

Figure 7: TRIAGE identifies regulators of heart development in the tunicate Ciona. 

(A) Schematic overview of cardiac development in Ciona from 4 to 72 hours post fertilization (hpf) at 18oC. Adapted 
from (Evans Anderson and Christiaen, 2016). TVC: trunk ventral cells; STVC: second TVC; FHP: first heart precursor; 
SHP: second heart precursor; ASMF: atrial siphon muscle founder cells; iASMP: inner atrial siphon muscle precursor; 
oASMP: outer atrial siphon muscle precursor. 

(B) Top 10 genes ranked by expression value (left) or TRIAGE (right) from populations found during Ciona heart 
development in vivo, highlighting RNF220 as a candidate gene. Genes labeled as “novel” have not been implicated in 
this process to the best of our knowledge. 

(C) Breadths of H3K27me3 domains (in base-pairs) associated with RNF220 gene across the 111 NIH Epigenomes data 
sets. 

(D-E) Mosaic plots (D) and images (E) showing ASM precursor phenotypes at 26 hpf labeled with Mesp>H2B:GFP and 
Mesp>mCherry in control knockout and RNF220-knockout animals (n=100). p-value represents the chi-sq test between 
two experimental conditions. Images in (E) derived from Ciona robusta cardiopharyngeal mesoderm. 
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from diverse cell types and epigenetic information hosted 
by NIH Roadmap Epigenomics (Kundaje et al., 2015) and 
represented by a simple gene-specific repressive tendency 
score. The RTS demarcates 5% of Refseq genes that are 
consistently regulated by broad H3K27me3 domains across 
major human cell lineages; we show this priority set is 
highly enriched in genes that govern cell differentiation and 
lineage diversification. 

Secondly, TRIAGE exploits the discordance between any 
gene’s expression and its RTS to predict cell-specific genes 
regulating cell identity with sensitivity and precision. We 
demonstrate a capacity of TRIAGE to prioritize genes 
involved in cell differentiation decisions in development 
and disease contexts. These inferences establish a genetic 
basis for gaining mechanistic insights into cell decisions, 
including the discovery of previously unknown genetic 
regulators as demonstrated by gene loss of function studies. 

The scalability and versatility of TRIAGE is exemplified in 
its implementation across diverse data types including 
single cell RNA-seq, ATAC-seq, CAGE-seq, proteomics, 
ChIP-seq or any genomic analysis method linked to protein 
coding genes. We provide evidence for TRIAGE as a tool 
for studying the genetic basis of cell differentiation choices 
in cell types from every organ system in the body and across 
species. TRIAGE provides a unique vantage point for 
studying genomic data that is complementary to many 
routine analysis approaches such as differential expression. 
While we demonstrate its use for studying developmental 
and cell differentiation decisions, additional studies are 
merited for evaluating the role of TRIAGE in analysis of 
adult tissues and disease responses.  

The evolutionary conservation of epigenetic regulation 
suggests that the repressive tendency can be applied across 
eukaryotic cell types where gene expression is governed by 
the polycomb group complex-2. PRC2 and its regulation of 
histone methylation are known to govern genes in protists, 
animals, plants as well as fungi (Margueron and Reinberg, 
2011). Indeed, zebrafish (Wu et al., 2011) and medaka 
(Nakamura et al., 2014) genes with broad H3K27me3 
deposition at promoter sites encode master developmental 
regulators overlapping with those found in our study. This 
illustrates the conservation of PRC2-mediated H3K27me3 
regulation and repression of genomic loci across species and 
its role controlling cell identity (Boyer et al., 2006; Fujikura 
et al., 2002). 

In contrast to previous strategies (Cahan et al., 2014; 
Rackham et al., 2016), TRIAGE does not require 
comparison against external reference information akin to 
differential gene expression analysis. It detects known 
regulatory genes that are distinct from genes identified using 
other approaches such as FH Score (Rehimi et al., 2016), 
H3K4me3 broad domains (Benayoun et al., 2014), or super-
enhancers (Creyghton et al., 2010; Hnisz et al., 2013; Jiang 

et al., 2019; Whyte et al., 2013). TRIAGE provides a 
seamless interface with a range of input data types 
measuring gene outputs of a cell with application by genetic 
orthologs for the study of any cell type across the animal 
kingdom.  

Among the limitations of TRIAGE, we used RTS mapped 
specifically to protein coding genes. This limits TRIAGE 
inference predictions to the 2% of the genome encoding 
proteins and precludes analysis of intergenic domains that 
also encode regulatory information (Andersson et al., 2014). 
Second, we note limitations on cross-species applications 
based on gene mapping tools and the profound differences 
in composition of cellular diversity that distinguish animal 
phyla. Despite this limitation, we demonstrate cross-species 
predictions and functional evidence of gene discovery in 
distantly related chordates using RTS for human. Third, 
TRIAGE uses a single number assigned to each protein 
coding gene to prioritise genes from cell type-specific data 
and therefore is not designed to evaluate changes between 
samples as would occur with fold change measured by 
differential expression. Finally, while the biological 
diversity represented in the 111 NIH Roadmap Epigenomics 
is limited, we illustrate that the method is robust to the 
sample input, by performing analyses on epigenomic data 
from >830 cell types in EpiMap. We anticipate that the 
generation of new reference epigenome databases (Adsera 
et al., 2019) covering a broader range of cell and tissue-
types will refine and expand the use of RTS revealing stress-
sensitive loci and novel disease drivers.  

This study establishes a unique strategy for the study of the 
transcriptional control mechanisms governing cell 
diversification, without demanding the provision of 
multiple data sets. With expanded analysis of epigenomic 
information of diverse cell and tissue types across 
eukaryotic species, the analysis can be implemented to 
study mechanisms underlying the genetic basis of complex 
cell traits, as well as gaining insights into evolutionary 
biology and genetic adaption across eukaryotic genomes 
governed by PRC2. 
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METHODS 

Data sets. We compared associations of 6 different histone 
modifications (H3K4me1, H3K4me3, H3K9me3, 
H3K27me3, H3K27ac and H3K36me3) with genes using 
consolidated broad peak representations from the NIH 
Roadmap database (Kundaje et al., 2015). We extracted a 
curated set of 1,605 human TFs from Animal TFDB and 
DBD (Wilson et al., 2008; Zhang et al., 2015). We identified 
3,804 housekeeping genes from the published literature 
(Eisenberg and Levanon, 2013). The repressive tendency 
score of genes were estimated based on biological diversity 
represented in the 111 NIH Roadmap human tissue and cell 
types.    

We utilized publicly available expression datasets to test 
performance of TRIAGE. We applied TRIAGE to 17,382 
transcriptome samples from GTEx (v8) (Lonsdale et al., 
2013), Roadmap and 329 selected FANTOM CAGE-seq 
developmental samples (Table S1) (Forrest et al., 2014). 
We demonstrated multi-omics applicability of TRIAGE 
with single-cell transcriptomes (Cao et al., 2019; Friedman 
et al., 2018; Schaum et al., 2018), human proteome (Kim et 
al., 2014) and Roadmap H3K36me3 ChIP-seq data.   

We evaluated TRIAGE in prioritizing cell identity genes 
against approaches based on H3K4me3 peak breadth 
(Benayoun et al., 2014), functional heterogeneity (FH) score 
(Rehimi et al., 2016), super-enhancers (SEs) (Hnisz et al., 
2013; Jiang et al., 2019; Whyte et al., 2013) and 
differentially expressed (DE) gene analysis. To this end, we 
selected 5 distinct tissue-groups as the reference point; (i) 
Brain, (ii) Lung, (iii) Pancreas, (iv) Skeletal muscle and (v) 
Heart. We calculated metrics using transcriptomic 
abundance and ChIP-seq data from the Roadmap data; Brain 
germinal matrix (E070) for the brain, Lung (E096) for the 
lung, Pancreas (E098) for the pancreas, Psoas muscle 
(E100) for the skeletal muscle and a published data set for 
cardiac progenitor cells for the heart (GSE97080) (Palpant 
et al., 2017b). We collated nearest active genes associated 
with SEs in corresponding tissue-groups (See Performance 
analysis of TRIAGE against existing methods) (Jiang et 
al., 2019). We also used GTEx expression profiles of 
samples that belong to these 5 tissue-groups; 417 samples 
from the left ventricle (Heart), 195 samples from the cortex 
(Brain), 268 samples from the pancreas (Pancreas), 607 
samples from the lung (Lung) and 718 samples from the 
skeletal muscle (Skeletal muscle). We averaged gene 
expression values of samples for each tissue-group.  

To identify a gene set regulating the cell fate, we used gene 
ontology (GO) annotation data (Ashburner et al., 2000). We 
identified TFs with a tissue-specific GO biological process 
(BP) term as the positive gene set with a defined regulatory 
role. For instance, we used ‘heart development’ term 
(GO:0007507) to select a set of TFs specific for heart 
development. Similarly, ‘brain development’ 

(GO:0007420), ‘lung development’ (GO:0030324), 
‘pancreas development’ (GO:0031016) and ‘muscle 
structure development’ (GO:0061061) GO terms were used 
to collect regulatory gene sets for brain, lung, pancreas and 
skeletal muscle samples, respectively. Finally, we extracted 
expressed genes (i.e. RPKM>1) in a given input sample as 
an active set of positive genes.  

Identifying genes as a proxy for cell type-specific 
regulatory genes. Along with TFs with a tissue-type-
specific GO BP term, we identified a gene set that 
universally represents cell type-specific regulatory genes. 
We identified 634 TFs whose expression values shows 
substantial variation (i.e. coefficient of variation>1) across 
the 46 Roadmap cell types and labelled them as variably 
expressed TFs (VETFs) (Table S2). This classification is 
based on previous observations that expression of 
developmentally regulated genes is highly variable both 
temporally and spatially (Perez-Lluch et al., 2015). 
Collectively, these 634 VETFs encompass regulatory genes 
for a broad range of cell and tissue types. We used a subset 
of these TFs that were expressed (RPKM>1 or equivalent) 
in a given input sample as the positive gene set.  

To ensure that our analysis is not confined to the narrow 
definition of cell type-specific regulatory genes above, we 
collated curated sets of tissue type-specific TFs (D'Alessio 
et al., 2015). This study ranked human TFs for their tissue 
specificity across 233 tissue groups based on the 
expressional specificity. We took top the 20 TFs for each 
tissue group by their specificity score, yielding a total of 713 
tissue-specific TFs. 428 of 634 our VETFs were indeed 
identified as members of these TFs, demonstrating 
agreement with the VETFs (p<2.2e-16, hypergeometric 
test). We used these tissue-specific TF sets as a 
complementary source of the positive gene set to assess 
performance of TRIAGE with the CAGE expression data.  

Quantifying cell type specificity of VETFs. We use 
Shannon entropy to quantify the specificity of expression 
for VETFs, as observed across 46 Roadmap cell types 
(Schug et al., 2005). The relative expression is calculated as  

𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑖𝑖,𝑗𝑗/∑ 𝑤𝑤𝑖𝑖,𝑘𝑘𝑚𝑚
𝑘𝑘=1   

where 𝑤𝑤𝑖𝑖,𝑗𝑗 is the expression value of gene i in cell type j, 
from 46 Roadmap cell types (m=46) and its cell type 
specificity is 

𝐻𝐻𝑖𝑖 = −∑ 𝑝𝑝𝑖𝑖,𝑘𝑘𝑚𝑚
𝑘𝑘=1 ∙ log2 𝑝𝑝𝑖𝑖,𝑘𝑘  

The cell type specificity ranges between 0 (when the gene is 
uniquely expressed in a single cell type) and log2 𝑚𝑚 (when 
the gene is expressed uniformly across all cell types). 
VETFs had significantly lower entropies (mean=3.64), 
compared to non-VETFs (mean=5.25, p=4.31e-230, 
Wilcoxon rank-sum test, one-tailed) and all protein-coding 
genes (mean=4.48, p=1.55e-108), indicating their 
expressional specificity.  
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Association of genes with a histone modification (HM) 
domain. To assign peaks (referred to as domains hereafter 
due to the focus on broad peaks) to genes, we used following 
steps.  

1. Defining the proximal region of the gene. We defined a 
proximal region for each gene. The proximal region for a 
gene is the RefSeq gene body plus a region extended by 
2.5kb from the TSS in the upstream direction.  

2. Provisional assignment of domains to genes. For each 
gene, we first identified HM domains with their center 
position overlapping the proximal region. These domains 
were provisionally assigned to the corresponding gene. 
Domains that were broad, with their center position outside 
of the proximal region were still included if the domain 
overlapped with any proximal regions of genes, in which 
case, the domain was provisionally assigned to all 
overlapping genes. Suppose that gene i in cell type j have a 
set of provisionally assigned domains, 𝐷𝐷𝑖𝑖,𝑗𝑗 =
{𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑙𝑙 , … } where 𝑑𝑑𝑙𝑙 is the breadth (in base-pairs) of 
the l-th domain provisionally assigned to the gene.     

3. Final assignment of domains to genes. If multiple 
domains were assigned to a gene i in cell type j, it is 
represented by the breadth of the broadest domain  

𝑏𝑏𝑖𝑖,𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐷𝐷𝑖𝑖,𝑗𝑗) 

This yields a single gene assigned with a single domain in a 
given cell type. We used BEDTOOLS intersect program to 
assign HM domains to RefSeq genes (Quinlan and Hall, 
2010). We removed any intergenic domains that did not 
overlap any proximal regions of genes to reduce potential 
bias from including intergenic regulatory elements (Rada-
Iglesias et al., 2011). We use a term assigned to indicate that 
the HM domain has been linked to the gene.  

Our approach to annotate genes with breadth of the broadest 
H3K27me3 domain did not result in loss of relevant 
functional information. To illustrate this point, we 
calculated correlation between expression level of a gene 
and (i) the breadth of the broadest H3K27me3 domain or (ii) 
the sum of breadths of all H3K27me3 domains assigned to 
the gene. When we performed this analysis across all the 
cell types in Roadmap, we found no significant difference 
in the correlation between these two approaches, with the 
mean Spearman’s rho of -0.364 and -0.337 respectively. 
Furthermore, the majority of domains finally assigned to 
protein-coding genes (i.e. approximately 85% of 1,537,514 
assigned H3K27me3 domains across the 111 cell types) 
overlapped a single gene (Figure S2C). Approximately 
66.9% of all H3K27me3 domains assigned to genes were 
identified in the RefSeq gene region while remaining 22.6% 
and 10.5% were in the promoter (+2.5kb from the TSS) and 
intergenic regions respectively, indicating that the majority 
(89.5%) of the assigned H3K27me3 domains were proximal 
to the gene.  

For cell type j, we have a set of HM domain breadth values 
𝐵𝐵𝑗𝑗 = �𝑏𝑏1,𝑗𝑗,𝑏𝑏2,𝑗𝑗, … , 𝑏𝑏𝑖𝑖,𝑗𝑗, … , 𝑏𝑏𝑛𝑛,𝑗𝑗� for n genes. Subsequently, 
we normalized breadth values to yield the breadth score (h) 
for all genes across the cell types, ℎ𝑖𝑖,𝑗𝑗 = 𝑏𝑏𝑖𝑖,𝑗𝑗−𝐵𝐵𝚥𝚥���

𝑠𝑠𝑗𝑗
 where 𝐵𝐵𝚥𝚥�  

and 𝑠𝑠𝑗𝑗 are the sample mean and the standard deviation of 
HM domain breadths in cell type j. 

Genomic locations of H3K27me3 domain. We 
investigated genomic locations of assigned 1,537,514 
H3K27me3 domains used for the RTS calculation. First, we 
identified a center position of each domain and used 
BEDTOOLS intersect program to identify if they overlap 
with (i) known RefSeq genes or (ii) promoters (defined as 
+2.5kb from the RefSeq TSS). If the domain does not 
overlap any of these, we labelled the domain as (iii) 
intergenic.  

Defining the broad H3K27me3 domain. We defined 
broad domains as the top 5% broadest domains, assigned to 
any gene. This threshold was based on efficacy of the 
threshold to recover genes with known regulatory and 
signaling functions. First, we observed that VETFs were 
strongly associated with broad H3K27me3 domains across 
the Roadmap cell types. When genes were ranked by the 
breadth of their finally assigned H3K27me3 domain, 
VETFs were most significantly (p=6.66e-16, Fisher’s exact 
test, one-tailed) enriched in the top 5% across all cell types 
(Figure 1C). To decide on this threshold, we assessed 
sensitivity of different thresholds (or rank position) to 
recover the VETFs and 641 KEGG signaling genes. We 
calculated a detection ratio (i.e. number of domains assigned 
to any positive gene divided by the total number of domains 
drawn at a given threshold) and a recovery percent (i.e. 
number of positive genes identified by collecting domains 
from all 111 Roadmap cell types at a given threshold, 
divided by the total number of positive genes). As each gene 
is assigned with a single domain in a given cell type, the 
detection ratio ranges from 0 (i.e. no single domain is 
associated with the positive gene) to 1 (i.e. all domains are 
associated with the positive gene). Similarly, the recovery 
percentage represents a cumulative proportion of positive 
genes captured at a threshold. We sought a threshold that 
maximized the detection ratio while recovering a majority 
of positive genes. Our analysis showed that a threshold at 
the 95th percentile (or top 5% broadest) met such conditions 
for both gene sets; only minor variations were observed at 
nearby rank positions (Figure S2A). For instance, 
approximately 81% of VETFs are identified at the 95th 
percentile (or rank position 5) where more than 15% of 
domains are assigned to VETFs. A variable (𝑋𝑋𝑖𝑖,𝑗𝑗) represents 
a binary outcome of whether a gene i is assigned with a 
H3K27me3 domain that is in the top 5% broadest in a cell 
type j.  
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𝑋𝑋𝑖𝑖,𝑗𝑗
= �1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻3𝐾𝐾27𝑚𝑚𝑚𝑚3 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 5%

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 Association of genes with broad HM domains. To 
understand association of broad HM domains with 
genes, we ranked genes by breadth of the assigned 
domain and grouped them into bins of 100 genes across 
the cell types. Jaccard similarity index was calculated 
at each rank bin between all pairs of cell types. To 
identify genes that are frequently associated with 
assigned broad HM domains across the Roadmap cell 
types, we counted the number of cell types where a 
given gene was assigned with the broad HM. We 
ranked genes by the count and identified the top 200 
genes for each HM type. 
Estimating H3K27me3 repressive tendency of the gene. 
We hypothesized that the regulatory importance of a gene 
in any cell type can be determined from evidence of (i) 
expression level of that gene in the same cell type, and (ii) 
breadth of H3K27me3 domains collected from a diverse 
range of cell types. To test this, we proposed a method that 
first quantifies the association of a gene with the H3K27me3 
domain. For each gene, the method considers (i) a sum of 
H3K27me3 breadth scores for the gene calculated from m 
cell types (e.g. 111 Roadmap cell types) and (ii) the number 
of cell types where the gene is associated with a broad 
H3K27me3 domain. For gene i, sum of the breadth scores 
(𝑣𝑣𝑖𝑖) is defined as follows.  

𝑣𝑣𝑖𝑖 = �ℎ𝑖𝑖,𝑘𝑘

𝑚𝑚

𝑘𝑘=1

 

The sum of breadth scores was then re-scaled into a range 
from 0 to 1 (𝑣𝑣𝑖𝑖′ ) as follows, where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  are 
maximum and minimum sums of the breadth scores from all 
genes respectively.  

𝑣𝑣𝑖𝑖′ =
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

The association score of gene i with the H3K27me3 domain 
(𝑎𝑎𝑖𝑖) was then calculated as the product of the scaled sum of 
breadth scores (𝑣𝑣𝑖𝑖′) and a proportion of cell types where the 
gene was associated with the broad H3K27me3 domain. To 
include genes without any broad H3K27me3 domains in any 
cell types, we added a pseudo-count of 1. 

𝑎𝑎𝑖𝑖 = 𝑣𝑣𝑖𝑖′ ∙ �
𝑋𝑋𝑖𝑖,𝑘𝑘 + 1
𝑚𝑚 + 1

𝑚𝑚

𝑘𝑘=1

 

  Finally, we re-scaled the association score into a range of 
0 (min) and 1 (max) to obtain the repressive tendency score 
(RTS) for the gene. For gene i, RTS is defined as follows, 
where 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  are maximum and minimum 
association scores for all genes, respectively.   

𝑅𝑅𝑖𝑖 =
𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
 

 

Consistency of the RTS values between different data 
sources 

To understand how the biological composition of samples 
affects calculation of the RTS, we utilised EpiMap (Adsera 
et al., 2019). We downloaded H3K27me3 data for all 834 
EpiMap samples in the BigWig format. These were 
converted to bedgraph format using UCSC 
bigWigToBedgraph program, obtained from 
http://hgdownload.soe.ucsc.edu/admin/exe/. To identify 
H3K27me3-enriched regions, we used MACS2 peak calling 
program, with -bdgbroadcall option to capture broad 
deposition of H3K27me3 (Zhang et al., 2008). We 
identified H3K27me3-enriched regions across all 834 
EpiMap samples.  

We calculated RTS values using (i) all 834 EpiMap 
samples, (ii) 332 embryonic samples (i.e. ‘embryonic’ in 
life stage based on the EpiMap metadata annotation), (iii) 
389 adult samples (i.e. ‘adult’ in life stage), (iv) 122 cancer 
samples (i.e. ‘cancer’ in group), or (v) 216 cell line samples 
(i.e. ‘cell line’ in type).  

Performance analysis of TRIAGE against existing 
methods. We extensively analyzed performance of 
TRIAGE against existing computational methods using 
various metrics. These include metrics based on (i) breadth 
of H3K4me3 peaks proximal to the gene (Benayoun et al., 
2014), (ii) breadth of H3K27me3 peaks at the gene locus 
multiplied by the corresponding expression level in a 
spatially heterogenous cell population (Rehimi et al., 2016) 
and (iii) super-enhancer (SE) (Hnisz et al., 2013; Jiang et 
al., 2019; Whyte et al., 2013) as well as common practices 
of differentially expressed gene (DEG) analysis. 
Furthermore, we tested TRIAGE with publicly available 
datasets including GTEx transcriptomes (v8) (Lonsdale et 
al., 2013), FANTOM5 CAGE-seq data (Forrest et al., 2014) 
as well as single-cell transcriptomes (Friedman et al., 2018; 
Schaum et al., 2018), human proteomes (Kim et al., 2014) 
and Roadmap H3K36me3 ChIP-seq data sets (Kundaje et 
al., 2015) encompassing diverse cell and tissue groups to 
compare the performance of TRIAGE against the gene 
expression readouts (See Benchmarking TRIAGE in 
multi-omics platforms). The following analyses were 
performed to performance test TRIAGE against previous 
epigenetic prediction analysis strategies: 

a. H3K4me3 breadth 

To compare performance of TRIAGE against the H3K4me3 
breadth-based metric (Benayoun et al., 2014), we used the 5 
distinct tissue groups (See Datasets). H3K4me3 peaks were 
assigned to nearest RefSeq genes using an in-house Python 
script. Peaks located further than 2.5kb from any RefSeq 
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TSSs were excluded. For genes with multiple assigned 
peaks, the broadest H3K4me3 peak was used to annotate the 
gene. Subsequently, genes were ranked by the breadth of the 
H3K4me3 peak.   

b. Functional heterogeneity (FH) score  

To test performance of TRIAGE on predicting 
developmental regulators against FH score (Rehimi et al., 
2016), we used chicken embryo dataset for enriched 
H3K27me3 domains identified in Rehimi’s study and the 
gene expression data (GSE89606) (Rehimi et al., 2016). 
These datasets satisfy the assumption of spatially 
heterogenous gene expression to calculate the FH score. We 
also downloaded genome annotation file (GFF3 format) for 
galGal4 chicken genome assembly 
(https://asia.ensembl.org/info/data/ftp/index.html) to 
quantify breadth of H3K27me3 peaks at the gene using 
BEDTOOLS intersect program (Quinlan and Hall, 2010). 
Furthermore, while the assumption of spatially 
heterogeneous gene expression is not strictly met, we also 
included FH score to evaluate its performance and 
applicability on the selected 5 distinct tissue groups (See 
Datasets).  

Genes were ranked at both developmental time-points 
(HH14 and HH19) based on 3 metrics; (i) normalized gene 
expression value (TPM), (ii) FH score from Rehimi’s study, 
and (iii) DS from TRIAGE. A total of 13,214 genes with an 
expression value (TPM>0) were included. We analyzed 
enrichment of 19 related GO BP terms used in Rehimi’s 
study using Fisher’s exact test (one-tailed) (Figure S5B).  

c. Super-enhancer (SE) based approach 

We downloaded lists of SEs for 5 selected tissue-types from 
a published SE database SEdb 
(http://www.licpathway.net/sedb/index.php) (Jiang et al., 
2019); (i) Heart left ventricle, (ii) Lung_30y, (iii) Pancreas, 
(iv) Psoas muscle_30y, and (v) Brain astrocyte which were 
linked to Roadmap epigenomes E095 (Left ventricle), E096 
(Lung), E098 (Pancreas), E100 (Psoas muscle) and 
ENCODE astrocyte (Brain) respectively. The algorithm to 
define SEs, ROSE (Rank-Order of Super-Enhancers) gives 
a binary outcome (i.e. SE or not) for each enhancer element 
(Whyte et al., 2013). As such, we extracted all nearest active 
genes of SEs and compared their functional enrichment 
against the same number of highly ranked genes by 
TRIAGE (Left ventricle (n=557), Lung (n=955), Pancreas 
(n=382), Psoas muscle (n=409) and Brain (n=689)) using 
Fisher’s exact test (one-tailed).  

d. Differentially expressed gene (DEG) analysis 

To test performance of TRIAGE against DEG analysis, we 
used published single-cell transcriptomes for in vitro 
cardiac-directed differentiation (Friedman et al., 2018) as 
well as selected bulk RNA-seq data for 3 distinct tissue 

groups (i.e. Blood, Brain and Heart) from the Roadmap 
project (Kundaje et al., 2015).   

We obtained cardiac single-cell transcriptomes for 
differentiation days 2 and 30 from the ArrayExpress 
database (E-MTAB-6268). The data were processed and 
cells were clustered as previously described (Friedman et 
al., 2018). For the Roadmap data, we extracted RNA-seq 
data for 3 representative samples for each tissue group 
(Blood; E037, E038, E047, Brain; E070, E071, E082 and 
Heart; E095, E104, E105). We calculated mean expression 
values of genes within each group or cell cluster. Genes 
were ranked by the fold change (FC) of the expression value 
between different groups or clusters using R library DESeq2 
(Love et al., 2014). We also tested performance of TRIAGE 
with the input gene set restricted to only TFs. To this end, 
we first excluded all non-TF genes from the input data. 
While DEG analysis often focuses on differentially 
expressed TFs as a candidate regulatory gene set, TRIAGE 
offers an unsupervised approach to prioritize cell type-
specific regulatory genes, without requiring any prior 
knowledge on the gene set. 

To demonstrate ability of TRIAGE as a complementary 
method to DE analysis to identify causal factors of cell 
identity, we compared rank analysis of genes using 108 
FANTOM5 CAGE-seq expression samples (as read counts) 
from 12 cell (or tissue) types (Table S1). We used a TSS 
with the highest read count as an expression value for the 
gene. We performed the DE analysis for all possible pairs 
of these 12 cell types using DESeq2 R package (Love et al., 
2014). Briefly, for each cell type, we identified top 100 
significantly highly expressed genes by comparing to each 
of all other cell types (i.e. 12 * 11 = 132 pair-wise 
comparisons).  

We first extracted genes that were significantly highly 
expressed (Benjamini-Hochberg FDR < 1e-06) in a given 
cell type compared to the other, then ranked those genes by 
the fold change. We used top 20 tissue specific TFs as the 
positive gene set for each cell (or tissue) type. We counted 
positive hits for each comparison and calculated the 
enrichment using hypergeometric test. For the comparison, 
we ran TRIAGE independently for the same set of the 12 
cell types. Top 100 genes were identified by the discordance 
score and overlaps with the positive gene set were 
computed.  

e. H3K27me3 gain/loss function 

We tested how TRIAGE performs against a simple gain/loss 
H3K27me3 function using a published dataset for induced 
in vitro differentiation of human cardiovascular cells 
between two different time-points; before differentiation 
(day0) and definitive cardiovascular cell stage (day14) 
(Paige et al., 2012). To this end, we first obtained AffyExon 
microarray expression (GSE19090) and H3K27me3 ChIP-
seq (GSE35583) data. We averaged probeset values to 
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obtain the gene expression value and merged H3K27me3 
peaks from replicates. To quantify H3K27me3 depositions, 
we mapped peaks to regions spanning from 2.5kb upstream 
of RefSeq TSSs to the entire gene body, which is 
represented by the number of overlapped base-pairs. We 
normalized depositions by the size of the region to get a 
value ranging between 0 (complete absence of H3K27me3) 
and 1 (completely covered by H3K27me3). Finally, change 
in the H3K27me3 deposition between the two time-points 
was calculated for all genes (i.e. ∆𝐻𝐻3𝐾𝐾27𝑚𝑚𝑚𝑚3 =
𝐻𝐻3𝐾𝐾27𝑚𝑚𝑚𝑚3𝑑𝑑𝑑𝑑𝑑𝑑14 − 𝐻𝐻3𝐾𝐾27𝑚𝑚𝑚𝑚3𝑑𝑑𝑑𝑑𝑑𝑑0 ). We ranked genes 
by loss of the H3K27me3 signal, DS and the expression 
values at day14.  

Statistical properties of the discordance score. We 
defined a statistical test to gauge if a DS assigned to a gene 
is higher than expected. The expected DS of a gene is based 
on two components: the expected RTS given the observed 
level of expression, and the expected level of expression 
given the observed RTS of the gene. The test first estimates 
p-values for the two test statistics, which are then combined 
by Fisher’s method to yield a single p-value based on the 
chi-squared distribution. In practical terms, an empirical 
null distribution is generated from repeated, random 
permutation of each test statistic of n comparable genes. 
Comparable genes are defined as those with the closest 
value to the gene of interest, in terms of the parameter that 
is not the test statistic (i.e. expression level or RTS). The p-

value is then the probability that the rank of the gene of 
interest improves as a result of the random permutation.  

Functional enrichment analysis. To compare efficacy of 
TRIAGE against other existing methods in prioritizing 
genes functionally important to a given tissue or cell state, 
we used a simple systematic approach to analyze 
enrichment of a selected GO term. For annotation purposes, 
we ranked only protein-coding genes. Ranked genes by a 
given metric (e.g. DS, gene expression value etc.) were first 
binned into a percentile bin (i.e. each bin includes 1% of the 
total gene populations in a given dataset). At each rank bin, 
we quantified enrichment of a selected GO biological 
process (BP) term using Fisher’s exact test (one-tailed). 
Essentially, we tested how significantly the GO term was 
enriched among genes above a rank bin 𝑥𝑥 (i.e. above top 𝑥𝑥% 
of the gene population) compared to the rest using a sliding 
window. The resultant significance (−𝑙𝑙𝑙𝑙𝑙𝑙10𝑝𝑝) was plotted 
against the rank bin, allowing visualization of how the 
enrichment changes as more lowly ranked genes were 
included in the analysis. To identify significantly 
(FDR<0.05) enriched GO BP terms among top ranked 
genes, we used a R package topGO (Alexa, 2019).  

Consistency of the RTS between different peak callers. 
To assess how the RTS changes with different peak calling 
methods, we independently calculated the RTS using peaks 
identified by 3 different peak callers, namely MACS2, SPP 
and Homer (Feng et al., 2012; Heinz et al., 2010; 
Kharchenko et al., 2008). Briefly, we first downloaded 
mapped ChIP-seq reads in tagAlign format for the 111 
Roadmap cell types. Peaks were identified by comparing 
H3K27me3 tag signals with the input for each peak caller 
across the cell types. For MACS2 peak caller, ‘callpeak’ 
program was used with ‘broad’ and ‘broad-cutoff’ of 0.1 
options to capture broad deposition of H3K27me3 (Feng et 
al., 2012). For SPP peak caller, 
‘get.broad.enrichment.clusters’ function (available under 
‘spp’ R library) with window.sizes=1000 and z.thr=3 was 
used as recommended for capturing broad HMs 
(Kharchenko et al., 2008). For Homer peak caller, 
‘findPeaks’ program was used with ‘-style histone’. This 
parameter ensures the peak caller to initially find peaks of 
size 500 bp and subsequently stitch into regions of 1000bp; 
a suitable approach to identify broad regions of histone 
modifications (Kharchenko et al., 2008). From outputs of 
each peak caller, we calculated RTS values as described 
above. Subsequently, DSs were computed for 3 distinct 
Roadmap tissue groups; Left ventricle (E095), Germinal 
matrix (E070) and T helper naïve cells (E038), using these 
3 different versions of the RTS. TFs with a selected GO term 
(Heart development GO:0007507, Brain development 
GO:0007420 and T cell differentiation GO:0030217 
respectively) were used as the positive gene set for the 
enrichment analysis. 

FANTOM5 CAGE-
seq cell (or tissue) 
type 

Tissue group for the positive 
gene set as defined 
previously (D'Alessio et al., 
2015)  

Adipocytes  White adipocyte 21 d 
differentiated from MSC 

Astrocytes Astrocyte  

Heart Heart 

Hepatocytes Hepatocyte 

Keratinocytes  Skin epithelial cell 
keratinocyte 

Kidney Kidney 

Melanocytes  Melanocyte 

Monocytes  Monocyte 

Neutrophils Neutrophil 

Skeletal muscle cells  Skeletal muscle 

Urothelial cells Urothelial cells 

Thalamus Thalamus 

Positive gene sets used for the performance analysis 
against DE 
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Accuracy of estimated RTSs. We estimated the RTS from 
the 111 NIH Roadmap tissue or cell types. To address 
potential sampling bias, we performed a bootstrapping 
analysis by randomly re-sampling cell types 10,000 times. 
For each re-sampling, we calculated the RTS for each gene. 
We collected the empirical bootstrap distribution of RTSs 
for each gene. RTSs of all 26,833 genes were estimated 
within 1 standard deviation of their respective mean, 
supporting consistency of the estimated RTS. 

Saturation of H3K27me3 signals. To understand whether 
the 111 cell types in Roadmap provide sufficient data to 
estimate stable RTSs, we developed an iterative process to 
quantify stability of the RTS with a differing number of cell 
type samples. Suppose we have n number of genes each of 
which has a RTS calculated based on H3K27me3 data 
observed in k number of cell types. We defined saturation 
state as a state where any change in the RTS for a given gene 
as a result of an addition of l number of cell types is within 
an arbitrarily defined range.  

If the signal is in the saturation state, adding l number of 
different cell types would not result in a noticeable change 
to the resultant RTS. To help quantification of the RTS 
change, we define a term stably ranked gene. Suppose gene 
i has an estimated RTS derived from k number of cell types 
and is ranked at a certain position (𝑢𝑢𝑖𝑖,𝑘𝑘). We say the gene is 
stably ranked if a resultant RTS re-calculated with an 
addition of l number of cell types put the gene at a rank 
position (𝑢𝑢𝑖𝑖,𝑘𝑘+𝑙𝑙 ) that is within a certain range of rank 
positions (𝜃𝜃) from the previous rank position (𝑢𝑢𝑖𝑖,𝑘𝑘). In other 
words, gene i is stably ranked if the resultant RTS change is 
not large enough to shift its rank position more than 𝜃𝜃 . 
Formally, a set of stably ranked genes with an addition of l 
number of cell types to k number of cell types (𝐺𝐺𝑘𝑘,𝑙𝑙) is a 
subset of all genes (𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎) and can be written as the follow. 

𝐺𝐺𝑘𝑘,𝑙𝑙 = �𝑖𝑖 ∈ 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎  | �𝑢𝑢𝑖𝑖,𝑘𝑘+𝑙𝑙 − 𝑢𝑢𝑖𝑖,𝑘𝑘� < 𝜃𝜃� 

For instance, if gene A is ranked at q position by the RTS 
calculated using k number of cell types, the gene A is a 
stably ranked gene if the rank does not change more than 𝜃𝜃 
positions (e.g. 1% of the total gene number) from q when an 
additional l number of cell types is included for the 
subsequent calculation.  

We started with k=3 randomly selected cell types and 
iteratively calculated the proportion of stably ranked genes 
at an increment of l=3 randomly selected cell types without 
replacement until all 111 cell types were used. To address 
potential sampling bias, we repeated this process 1,000 
times and obtained mean values and the 95% confidence 
interval of the estimation (Figures S2F-G). We used a range 
of different thresholds (i.e. 1~5% of the total gene number) 
for the stably ranked gene (Figure S2G).   

Correlation between the expression and the H3K27me3 
domain breadth. H3K27me3 represses transcription of the 

target gene but it is not known whether cell type-specific 
regulatory genes have a distinct functional relationship with 
this repressive HM. Based on strong association of cell type-
specific TFs with broad H3K27me3 domains, we 
questioned whether the repressive effect of H3K27me3 was 
more prominent among the cell type-specific TFs. To this 
end, we first identified five classes of genes (i.e. (i) 634 
VETFs to represent cell type-specific regulatory genes, (ii) 
7,445 variably expressed non-TFs, (iii) 18,708 protein-
coding genes, (iv) 793 non-VETFs and (v) 3,805 
housekeeping genes). For each gene, we calculated a 
Pearsons’s correlation coefficient between the gene 
expression value and the breadth of the corresponding 
H3K27me3 domain across the 46 Roadmap cell types.  

Functional relationship between the repressive tendency 
and gene transcription. To understand association of RTS 
with the transcriptional outcome, we first ranked genes in a 
descending order of the RTS. We only considered coding 
genes and assigned them into bins of 100 genes. For the 
gene expression level, an average expression value of the 
gene set at each rank bin was calculated across the 46 cell 
types (Figure 2D). For the expressional specificity, a 
proportion of cell types where a given gene was expressed 
(RPKM>1 or equivalent) out of the 46 cell types was 
calculated (Figure 2C). As there were 100 genes in each 
rank bin, we calculated the average proportion of the 100 
genes in each bin.    

Comparison of clustering accuracy. We compared 
clustering accuracy based on expression values and DSs 
using the scRNA-seq mixology benchmarking data set 
(Tian et al., 2019). The data set we used (sc_10x) was 
generated on the 10X platform and provided expression 
values as counts for each of three distinct, labelled, human 
lung adenocarcinoma cell lines. We assessed the clustering 
of this data across three methods: SC3 (1.10.0), CORE 
(ascend 0.9.6) and Seurat (2.3.0) (Butler et al., 2018; 
Kiselev et al., 2017; Senabouth et al., 2019). Each of the 
clustering methods were used as detailed by their authors in 
their documentation or tutorials, including any filtering and 
scaling steps. In the SC3 clustering, the k parameter (ks) was 
set to 3, and the remainder of the parameters across all three 
algorithms were chosen as specified in their documentation 
or left at default.  

To quantify the performance of the clustering methods, we 
used the Adjusted Rand Index as calculated by the mclust 
package (5.4.2) (mclust::adjustedRandIndex) (Scrucca et 
al., 2016), comparing the cluster assignment in each 
clustering method to the three cell line labels from the 
mixology data set. The PCA plots were generated using the 
ascend package (ascend::plotPCA) (Senabouth et al., 2019) 

Benchmarking TRIAGE in multi-omics platforms. We 
hypothesized that TRIAGE would be applicable to any 
quantifiable genomic data that reasonably reflects the 
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expression level of genes. To demonstrate applicability of 
TRIAGE to various multi-omics platforms, we used GTEx 
(v8) transcriptomes (Lonsdale et al., 2013), single-cell 
transcriptomes (Cao et al., 2019; Friedman et al., 2018; 
Schaum et al., 2018), FANTOM5 cap analysis of gene 
expression (CAGE) peaks (Forrest et al., 2014), human 
proteomes (Kim et al., 2014) and Roadmap H3K36me3 
ChIP-seq data (Kundaje et al., 2015). For each sample, we 
identified top 100 genes ranked by TRIAGE and 
significantly enriched GO BP terms (Benjamini-Hochberg  
FDR<1e-6, hypergeometric test). This was compared with 
the enrichment from top 100 most highly expressed genes. 
We extracted terms that were significantly enriched 
(Benjamini-Hochberg FDR<1e-6, hypergeometric test) 
specifically in less than a third of all comparing samples. In 
addition to the GO term, we provided summary plots for 
enrichment of the VETFs by including the lowest p-value 
when the significance was calculated across the percentile 
rank positions (Figures 5G-H, J).  

The Tabula Muris mouse single-cell RNA-seq data 
encompass nearly 100,000 cells from 20 different tissue 
types (Schaum et al., 2018). We averaged expression values 
of genes for each tissue type to calculate corresponding DSs. 
For the CAGE data set (Forrest et al., 2014), we used the 
normalized CAGE tag density for the expression value of 
the corresponding gene. The highest CAGE tag density 
assigned to the gene was used so that each gene was 
annotated with a value from a TSS with the highest value. 
We selected 329 FANTOM5 samples that covers 25 distinct 
cell types without a disease annotation (Table S1). For 
human proteomic data (Kim et al., 2014) covering 30 
different tissue groups, we used the protein expression value 
to link to the corresponding gene for the quantification. For 
H3K36me3 data set, we collected mapped reads for 
H3K36me3 ChIP-seq for the 111 Roadmap cell types. For 
each cell type, we quantified the read density for each gene 
by calculating the number of reads per base-pair mapped to 
the RefSeq gene body. We then used the tag density as a 
proxy for the transcriptional abundance of the gene to 
calculate the DS.  

To provide further validation on our analysis, we used tissue 
specific TFs from 233 distinct tissue groups as another 
positive gene sets collected from an independent study 
(D'Alessio et al., 2015). We extracted top 20 most tissue 
specific TFs (by specificity score) across the tissue groups 
and analyzed their enrichment among the top 100 genes 
ranked by TRIAGE or the expression value.  

Visualization of multi-omics datasets. To visualize 
performance of TRIAGE on multiple samples on a single 
plot simultaneously, we summarized the performance for 
each sample by (i) the most significant p-value (y-axis, 
Fisher’s exact test for enrichment of VETFs, one-sided) and 
(ii) the corresponding rank position where (i) is observed (x-
axis, as the percentile rank position with 1 the highest and 

100 the lowest) (Figures 5G, 5J). Each sample was 
represented as a single data point on the plot.  

Inter-species application of the TRIAGE. Given a high 
level of evolutionary conservation for the PRC2 
(Margueron and Reinberg, 2011), we hypothesized that the 
RTS calculated from the human data could be effectively 
applied to equivalent genes of other species. To test this, we 
first downloaded a range of transcriptomic data sets from 
different species covering the 5 selected tissue-groups 
(Table S1). We then performed inter-species gene mapping 
using online Ensembl bioMart 
(http://asia.ensembl.org/biomart/martview/) by identifying 
human orthologues (Haider et al., 2009). Only genes 
mappable to human orthologues were included in the 
analysis.  

Biological effect of perturbing TRIAGE priority genes 
in hESCs. To evaluate the biological significance of 
perturbing TRIAGE priority genes, we utilized public 
resource data (Nakatake et al., 2020) in which 714 
doxycycline-inducible transgene (including 418 TFs) 
overexpression (OE) hESC lines were established and 
assessed for transcriptome changes via RNA-
seq/microarray 48hrs after the presence or absence of dox 
(Figure S2H). A total of 510 transgene OE cell lines were 
sequenced, out of which we identified 145 TRIAGE priority 
genes and 363 non-priority genes, excluding DUX4 and 
LHFPL6 which did not have RTS scores (Figure S2E). 
Within these two groups, the number of differentially 
expressed genes after induction of a transgene (comparing 
control vs. +dox samples for each cell line) was determined 
using ExAtlas (>2-fold-change, Benjamini-Hochberg 
FDR<0.05) (Sharov et al., 2015). The total number of DEGs 
was compared between TRIAGE priority (n=145) and non-
priority (n=363) groups using an unpaired t-test with 
Welch’s correction (p<0.0001, two-tailed).  

Melanoma gene set enrichment. We used published pre-
processed single cell RNA-seq data from melanoma tumors 
(Tirosh et al., 2016).1,252 melanoma cells were isolated 
from the set of approximately 4,000 cells based on the 
authors annotations. Melanoma proliferative and invasive 
gene sets were obtained from the same source. Based on the 
ratio of the average gene expression of the proliferative to 
invasive genes; the top 50 most proliferative and the top 50 
most invasive cells were identified. TRIAGE was applied to 
the melanoma gene expression profiles to produce DS 
profiles. Averages of both expression and the discordance 
profiles of the top 50 proliferative and invasive cells were 
taken. Genes were subsequently ranked by the expression 
and discordance values for these representative profiles. For 
the ranked genes, fishers exact test was iteratively 
performed from the top ranked genes down the list as 
described above; adding 1% of the genes at each iteration. 
Gene sets tested for enrichment were obtained from 
published melanoma data sets (Tirosh et al., 2016). False 
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discovery rate was used to correct for multiple hypothesis 
testing. 

Heart Failure pathogenesis dataset. To determine the 
utility of TRIAGE in identifying regulatory elements and 
processes of disease in heart failure pathogenesis we used 
published pre-processed bulk RNA-seq data from adult 
mouse ventricles (GSE58453 and GSE68509) (Duan et al., 

2017). Briefly, heart failure was induced using transverse 
aortic constriction (TAC) and the small molecule pan-BET 
inhibitor JQ1 was used to treat the TAC condition. TRIAGE 
was applied to the gene set of each condition (SHAM, TAC, 
TAC+JQ1) to produce DS profiles. Genes were 
subsequently ranked by the expression and discordance 
values for these representative profiles. For the ranked 
genes, Fishers exact test was iteratively performed from the 
top ranked genes down the list for GO terms of interest. 

Gene Ontology Visualization. Gene ontology analysis was 
performed using DAVID with significance threshold set at 
FDR<0.05. The p-values from gene ontology analysis were 

visualized with the radius of the circle proportional to the 
negative natural log of the input p-value.  

iTranscriptome Sample Preparation and Data Analysis. 
Samples were generated according to the methodology 
previously published (Peng et al., 2016). E5.5, E6.0, E6.5, 
E7.0 and E7.5 embryos were cryo-sectioned along the 
proximal-distal axis. Populations of approximately 20 cells 

were collected from different 
regions of the cross-section by laser 
microdissection and processed for 
RNA sequencing (see Figure S9E). 
From the RNA-sequencing dataset, 
differentially expressed genes 
(DEGs) were screened first by 
unsupervised hierarchical 
clustering method to group samples 
in the respective regions. Genes 
with an expression level FPKM>1 
and a variance in transcript level 
across all samples greater than 0.05 
were selected. To identify inter-
region specific DEGs, each of these 
selected genes was submitted to a t-
test against the level of expression 
in the other regions. Genes with a 
p-value<0.01 and a fold 
change>2.0 or <0.5 were defined as 
DEGs.  The gene expression pattern 
(region and level of expression by 
transcript reads) of the gene of 
interest was mapped on the corn 
plots, where each kernel represents 
the cell population sampled at a 
defined position in the tissue layers 
of the embryo, to generate a digital 
2D rendition of the expression 
domain that emulated the display of 
the result of whole mount in situ 
hybridization. 

Selection of candidate genes for 
biological validation using 

TRIAGE. Candidate genes for biological validation of 
TRIAGE predictions in in vitro hiPSC and in vivo Ciona 
model systems were selected using the following criteria. 
Genes were selected if  (1) ranked in the top 10 TRIAGE-
expression gene list (2) fall within the top 1359 TRIAGE 
priority genes (3) have no known role in the population of 
interest (4) transcription factor or signaling molecule, and 
(5) efficient CRISPRi knockdown in hPSCs or CRISPR 
knockout in Ciona (Figure S9A). Using this selection 
criteria the following genes were selected for genetic loss of 
function: 

*Note: CRLF1, ZNF503 and IGF2BP1/2/3 were ranked 
within the top 25 TRIAGE-expression list, and were chosen 

Candidate 
genes RTS Population of interest Dataset 

Efficient 
CRISPR 
K/D or 
K/O 

SIX3 0.539 Definitive 
Endoderm/Mesendoderm 

hiPSC cardiac 
differentiation, 
Day 2 

Yes 

GAD1 0.176 Endothelial Cells 
hiPSC cardiac 
differentiation, 
Day 5 

Yes 

CRLF1* 0.079 Mesendoderm 
hiPSC cardiac 
differentiation, 
Day 5 

No 

ZNF503* 0.077 Cardiac Progenitor Cells 
hiPSC cardiac 
differentiation, 
Day 5 

No 

RNF220 0.304 First Heart Precursors Ciona heart 
development  Yes 

IRX4/6 
0.318/ 

0.179 
Atrial Siphon Muscle Ciona heart 

development  Yes 

TBX2/3 
0.188/ 

0.332 
Trunk Ventral Cells Ciona heart 

development  No 

IGF1/2 
0.001/ 

0.164 
First Heart Precursors Ciona heart 

development  No 

IGF2BP1/2/3* 0.172 First Heart Precursors Ciona heart 
development No 
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based on high population specificity, whilst all other genes 
fell within the top 10. 

For these genes CRISPR K/D hPSC cell lines and CRISPR 
K/O Ciona embryos were generated testing 3 gRNAs per 
gene. Efficiency of genetic loss of function was then tested 
via qPCR in hPSCs and peakshift assay in Ciona.  Of the 
genes which displayed efficient loss of function, SIX3 and 
RNF220 were chosen for further biological phenotype 
validation because they had higher RTSs and had no known 
roles in the relevant populations of interest.  

Generation and Maintenance of Human ESC/iPSC 
Lines. All human pluripotent stem cell studies were carried 
out in accordance with consent from the University of 
Queensland’s Institutional Human Research Ethics 
approval (HREC#: 2015001434). WTC CRISPRi GCaMP 
hiPSCs (Karyotype: 46, XY; RRID CVCL_VM38) were 
generated using a previously described protocol(Mandegar 
et al., 2016) and were generously provided by M. Mandegar 
and B. Conklin (UCSF, Gladstone Institute). WTC 
CRISPRi SIX3-g2 hiPSCs were generated in this study (see 
below). All cells were maintained as previously 
described(Palpant et al., 2017a). Briefly, cells were 
maintained in mTeSR media with supplement (Stem Cell 
Technologies, Cat.#05850) at 37º C with 5% CO2. WTC 
CRISPRi GCaMP and WTC CRISPRi SIX3-g2 hiPSC lines 
were maintained on Vitronectin XF (Stem Cell 
Technologies, Cat.#07180) coated plates.  

WTC CRISPRi SIX3-g2 hiPSCs. 3 separate guide RNAs 
(gRNA) targeting the CAGE-defined transcriptional start 
sites of the human SIX3 sequence were designed and cloned 
into the pQM-u6g-CNKB doxycycline-inducible construct 
and transfected into WTC CRISPRi GCaMP hiPSCs using 
the Neon transfection system (Invitrogen, Cat.#MPK1096). 
For electroporation, 0.5µg DNA and 1x105 dissociated 
hiPSCs were mixed in 10µL resuspension buffer R 
(Invitrogen, Cat.#MPK1096). Electroporation parameters 
were as follows: pulse voltage, 1300V; pulse width, 30ms; 
and pulse number, 1. Cells were then plated in Vitronectin 
XF (Stem Cell Technologies, Cat.#07180) coated plates in 
mTeSR media (Stem Cell Technologies, Cat.#05850) 
supplemented with 10µM of Y-27632 (Stem Cell 
Technologies, Cat.#72308). Stable clones were selected 
using successive rounds of re-plating with blasticidine at 
10µg/ml (Sigma, Cat.#15205). Populations were tested for 
knockdown efficiency by qPCR following doxycycline 
addition at 1 µg/ml (Sigma, Cat.#D9891) continuously from 
day 0 of cardiac-directed differentiation (n=12-16 technical 
replicates per condition from 4-5 experiments). WTC 
CRISPRi SIX3-g2 line displayed high knockdown 
efficiency and therefore was chosen.  

Guide RNAs designed: 

gRNA 
Name 

Oligo Sequences 

5’ – Forward Primer – 3’ 

5’ – Reverse Primer – 3’ 

SIX3 
gRNA1 

F: TTGGGCTGAATCTTGACTCGGCGG  

R: AAACCCGCCGAGTCAAGATTCAGC 

SIX3 
gRNA2 

F: TTGGTGTCATTAGGGCGATTGCGG  

R: AAACCCGCAATCGCCCTAATGACA  

SIX3 
gRNA3 

F: TTGGCTCTATGTGGCTGGCGGGTG 

R: AAACCACCCGCCAGCCACATAGAG  

 

Cell Culture. All human pluripotent stem cell studies were 
carried out in accordance with consent from the University 
of Queensland’s Institutional Human Research Ethics 
approval (HREC#: 2015001434). hiPSCs were maintained 
in mTeSR media (Stem Cell Technologies, Cat.#05850). 
Unless otherwise specified, cardiomyocyte directed 
differentiation using a monolayer platform was performed 
with a modified protocol based on previous 
reports(Burridge et al., 2014). On day -1 of differentiation, 
hPSCs were dissociated using 0.5% EDTA, plated into 
vitronectin coated plates at a density of 1.8 x 105 cells/cm2, 
and cultured overnight in mTeSR media. Differentiation 
was induced on day 0 by first washing with PBS, then 
changing the culture media to RPMI (ThermoFisher, 
Cat.#11875119) containing 3µM CHIR99021 (Stem Cell 
Technologies, Cat.#72054), 500µg/mL BSA (Sigma 
Aldrich, Cat.#A9418), and 213µg/mL ascorbic acid (Sigma 
Aldrich, Cat.#A8960). After 3 days of culture, the media 
was replaced with RPMI containing 500µg/mL BSA, 
213µg/mL ascorbic acid, and 5µM Xav-939 (Stem Cell 
Technologies, Cat.#72674). On day 5, the media was 
exchanged for RPMI containing 500µg/mL BSA, and 
213µg/mL ascorbic acid without supplemental cytokines. 
From day 7 onwards, the cultures were fed every 2 days with 
RPMI plus 1x B27 supplement plus insulin (Life 
Technologies Australia, Cat.#17504001).  

Quantitative RT-PCR. For quantitative RT-PCR, total 
RNA was isolated using the RNeasy Mini kit (Qiagen, 
Cat.#74106). First-strand cDNA synthesis was generated 
using the Superscript III First Strand Synthesis System 
(ThermoFisher, Cat.#18080051). Quantitative RT-PCR was 
performed using SYBR Green PCR Master Mix 
(ThermoFisher, Cat.#4312704) on a ViiA 7 Real-Time PCR 
System (Applied Biosystems). The copy number for each 
transcript is expressed relative to that of housekeeping gene 
HPRT1. Samples were run in biological triplicate. FC was 
calculated on a gene by gene basis as gene expression 
divided by control gene expression. The following are qRT-
PCR primers utilized in this study: 
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Flow Cytometry. On day 2 of cardiac differentiation cells 
were dissociated using 0.5% EDTA and put into blocking 
buffer of 50% fetal bovine serum (FBS) in Dulbecco’s 
Modified Eagle Medium (DMEM)/F12 (ThermoFisher, 
Cat.#11320033). Cells were then pelleted and resuspended 
in 10% FBS in DMEM media. Cells were labeled live for 
flow cytometry using CD184 (BD Biosciences, 
Cat.#555974), EpCAM (BD Biosciences, Cat.#347199) and 
corresponding isotype controls were used to gate the cells. 
On day 15 of cardiac differentiation cells were fixed with 
4% paraformaldehyde (Sigma, Cat.#158127) and 
permeabilized in 0.75% saponin (Sigma, Cat.#S7900). On 
day 15 of cardiac differentiation fixed cells were labeled for 
flow cytometry using alpha-actinin (Miltenyi Biotec, 
Cat.#130106937) and corresponding isotype control. Cells 
were analyzed using a BD FACSCANTO II (BD 

Biosciences) with FACSDiva software (BD Biosciences). 
Data analysis was performed using FlowJo (Tree Star). 

Ciona robusta CRISPR/Cas9 gene editing For Rnf220 
(KH2012:KH.C8.791) loss of function, 3 sgRNAs were 
designed to avoid genomic off-targets and tested as 
described (Stolfi et al., 2014).  sgRNA expressing cassettes 
(U6 > sgRNA) were assembled by single step overlap PCR. 
Individual PCR products (~25 µg) were electroporated with 
EF1a > NLS::Cas9::NLS (20 µg), Myod905 > Venus (50 
µg), driving ubiquitous expression of Cas9 and a widely 
expressed fluorescent reporter construct, respectively, as 
described (Christiaen et al., 2009). Efficient electroporation 
was confirmed by observation of fluorescence before 
genomic DNA extraction around 16 hpf (18°C) using 
QIAamp DNA Micro kit (Qiagen, German Town, MD). 
Mutagenesis efficacy of individual sgRNAs, as a linear 

 
  

Gene Name 5’-Forward Primer-3’ 5’-Reverse Primer-3’ 

HPRT TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT 

SIX3 GCAGAAGACGCATTGCTTCAA CCCAGCAAGAAACGCGAAC 

SOX2 TGGACAGTTACGCGCACAT CGAGTAGGACATGCTGTAGGT 

HHEX AATGCTGGATGATGACCACT TAATTGAGCAGTGCACCAAA 

GATA6 TGCAATGCTTGTGGACTCTA GTGGGGGAAGTATTTTTGCT 

SOX17 ACGCCGAGTTGAGCAAGA TCTGCCTCCTCCACGAAG 

FOXA2 TGCACTCGGCTTCCAGTATG CATGTTGCTCACGGAGGAGT 

NODAL TGGAGGTGGGATGAAGTCACCTAT AACCCAGCCTGAGGCAATGAGATT 

GSC GAGGAGAAAGTGGAGGTCTGGTT CTCTGATGAGGACCGCTTCTG 

EOMES CACATTGTAGTGGGCAGTGG CGCCACCAAACTGAGATGAT 

SOX7 TGACAACTTGTTGCCAACTCCCTG TTCAGCAGTGGAGGAAGAGCAGAA 

GATA4 GACCTGGGACTTGGAGGATA ACAGGAGAGATGCAGTGTGC 

MIXL GGCGTCAGAGTGGGAAAT CC GGCAGGCAGTTCACATCTACC 

DKK1 AACAGCTATCCAAATGCAG TCACAGGGGAGTTCCATAAA 

MEST CTGTGGGTGTGGTTGGAAGT TGTCACTGAAGCCAAAGCCT 

T (Bry) GTCAGAATAGGTTGGAGAATTG CAAATCCTCATCCTCAGTTTG 

MESP1 TCGAAGTGGTTCCTTGGCAGAC CCTCCTGCTTGCCTCAAAGTGTC 

WNT8A GCAGAGGCGGAACTGATCTT CGACCCTCTGTGCCATAGATG 

WNT3A AACTACGTGGAGATCATGCCC GACTCCCTGGTAGCTTTGTC 

APLNR CCGCAGACCCTTTCATCCTT ACACCCCTCCATCCTCTCTC 

DLL1 TGGGGAGAAAGTGTGCAACC TGCATTCCCCTGGTTTGTCA 

CDX2  CTCGGCAGCCAAGTGAAAAC TGCGGTTCTGAAACCAGATTTT 
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function of Cas9-induced indel frequency, was estimated 
from electrophoregrams following Sanger sequencing of the 
targeted regions amplified from extracted genomic DNA by 
PCR. Results of the relative quantification of the indel 
frequency (‘corrected peakshift’ of 22% and 16%) for 
sgRNAs 2 and 3 was considered high enough for both 
sgRNAs targeting Rnf220, which were finally selected. The 
corresponding cassettes were cloned into plasmid for 
repeated electroporations to study the loss of function of 
Rnf220. In order to control the specificity of the 
CRISPR/Cas9 system, sgRNAs targeting Tyrosinase, a 
gene not expressed in the cardiopharyngeal lineage, was 
electroporated in parallel. For imaging experiments, 
sgRNAs (25 µg) were electroporated with 
Mesp > NLS::Cas9::NLS (20 µg), Mesp > H2B:GFP (50 
µg) and Mesp > mCherry (50 µg) . Sequences of the DNA 
targets and oligonucleotides used for the sgRNAs: 

Embryos were fixed in 4% MEM-FA for 30 minutes, 
incubated with an NH4Cl solution, and imaged using Leica 
SP8 X Confocal microscope. 
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Lead contact: Further information and requests for 
resources and reagents should be directed to and will be 
fulfilled by the Lead Contact, Nathan J. Palpant 
(n.palpant@uq.edu.au).  

Materials availability: This study did not generate new 
materials.  

Data and Code availability:  

• Source data statement: This paper analyzes 
existing, publicly available data. These datasets’ 
accession numbers are provided in the manuscript 
text and Supplementary Table 1. 

• Code statement: We provide the TRIAGE source 
code written in Python and R 
(https://github.com/woojunshim/TRIAGE). Users 
can also run the TRIAGE analysis using a web 
accessible interface 
(http://bioinf.scmb.uq.edu.au/adhoc/). 

• Scripts statement: The scripts used to generate the 
figures reported in this paper are available at 
https://github.com/woojunshim/TRIAGE.  

Any additional information required to reproduce this work 
is available from the Lead Contact. 

QUANTIFICATION AND STATISTICAL 
ANALYSIS: Unless otherwise noted, all data are 
represented as mean ± standard error of mean (SEM). 
Indicated sample sizes (n) represent biological replicates 
including independent cell culture replicates and individual 

 

sgRNA name Universal sgRNA name Protospacer + PAM Sequence Doench 16' score 

RNF220_sg1 RNF220_p.A GCGATGAACGGATGCGCTGG CGG 64 

RNF220_sg2 RNF220.e1.A GGGTCGGGTTGATTGCACTT GGG 63 

RNF220_sg3 RNF220.e1.B CCCCCACCAGACTTCAGCAG CGG 65 

TyrC sgTYR_e5.B TCGATACTACCTGCTTAAGT GGG 54 

 

sgRNA name OSO Primer Forward 

RNF220_sg1 gCGATGAACGGATGCGCTGGgtttaagagctatgctggaaacag 

RNF220_sg2 gGGTCGGGTTGATTGCACTTgtttaagagctatgctggaaacag 

RNF220_sg3 gCCCCACCAGACTTCAGCAGgtttaagagctatgctggaaacag 

TyrC gCGATACTACCTGCTTAAGTgtttaagagctatgctggaaacag 

  

 OSO Primer Reverse 

RNF220_sg1 CCAGCGCATCCGTTCATCGcatctataccatcggatgccttc 

RNF220_sg2 AAGTGCAATCAACCCGACCcatctataccatcggatgccttc 

RNF220_sg3 CTGCTGAAGTCTGGTGGGGcatctataccatcggatgccttc 

TyrC ACTTAAGCAGGTAGTATCGcatctataccatcggatgccttc 
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tissue samples. No methods were used to determine whether 
data met assumptions of the statistical approach or not. Due 
to the nature of the experiments, randomization was not 
performed and the investigators were not blinded. Statistical 
significance was determined in GraphPad Prism 7 software 
by using student’s t test (unpaired, two-tailed) or ordinary 
one-way ANOVA unless otherwise noted. Results were 
considered to be significant at p < 0.01(*). Statistical 
parameters are reported in the respective figures and figure 
legends. All statistical data are represented as mean ± SEM. 

ACKNOWLEDGEMENTS 

E.S acknowledges funding by Children’s Hospital 
Foundation Queensland (Award Reference Number: 
50268). B.V. acknowledges funding by American Heart 
Association grant #18PRE33990254. The Ciona work was 
supported by NIH/NHLBI award R01 HL108643 to L.C. 
M.A. was supported by the Swiss National Science 
Foundation (project P2LAP3_178056), P.P.L.T. is 
supported by the National Health and Medical Research 
Council of Australia (Grant 1110751). N.P is supported by 
the National Health and Medical Research Council of 
Australia (Grant 1143163) and the Australian Research 
Council (Grant SR1101002).  

AUTHOR CONTRIBUTIONS 

WJS: Developed the computational basis for the study, 
performed data analysis and wrote the manuscript  

ES: Contributed to experimental and computational design 
for the study, performed data analysis, carried out functional 
genetic studies in hPSCs and wrote the manuscript  

JX: Assisted with computational analysis and developed 
web interactive interface  

MA: Performed computational analysis on HF pathogenesis 
data 

GA: Performed computational analysis on HF pathogenesis 
data 

SS: Assisted the computational analysis on different single-
cell data platforms    

BB: Performed computational analysis on melanoma 
studies  

YS: Performed computational analysis on Mouse 
Organogenesis Cell Atlas data  

CB: Contributed EpiMap data 

BV: Performed functional analysis on ciona and validated 
the findings 

GP: Assisted with spatiotemporal transcriptomic profiling 
of mouse gastrulation 

NJ: Assisted with spatiotemporal transcriptomic profiling 
of mouse gastrulation 

YW: Helped with computational analysis of epigenetic data 

MK: Contributed EpiMap data 

MP: Assisted with analysis and interpretation of melanoma 
data 

AS: Carried out experiments involving melanoma analysis 

PT: Supervised work on spatiotemporal transcriptomic 
profiling of mouse gastrulation 

LC: Performed functional analysis on ciona and validated 
the findings 

QN: Provided assistance to implement TRIAGE on single-
cell data sets  

MB and NJP: Supervised the project, raised funding, and 
wrote the manuscript  

DECLARATION OF INTERESTS 

The authors declare no competing interests. 

    

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2020. ; https://doi.org/10.1101/635516doi: bioRxiv preprint 

https://doi.org/10.1101/635516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

References 

Adsera, C.B., Park, Y.P., Meuleman, W., and Kellis, M. 
(2019). Integrative analysis of 10,000 epigenomic maps 
across 800 samples for regulatory genomics and disease 
dissection. BioRxiv. 
Alexa, A. (2019). topGO: Enrichment Analysis for Gene 
Ontology. R package version 2.38.1. 
Alexanian, M., Maric, D., Jenkinson, S.P., Mina, M., 
Friedman, C.E., Ting, C.C., Micheletti, R., Plaisance, I., 
Nemir, M., Maison, D., et al. (2017). A transcribed 
enhancer dictates mesendoderm specification in 
pluripotency. Nat Commun 8, 1806. 
Anand, P., Brown, J.D., Lin, C.Y., Qi, J., Zhang, R., Artero, 
P.C., Alaiti, M.A., Bullard, J., Alazem, K., Margulies, K.B., 
et al. (2013). BET bromodomains mediate transcriptional 
pause release in heart failure. Cell 154, 569-582. 
Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., 
Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., 
Suzuki, T., et al. (2014). An atlas of active enhancers across 
human cell types and tissues. Nature 507, 455-461. 
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, 
H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., 
Eppig, J.T., et al. (2000). Gene ontology: tool for the 
unification of biology. The Gene Ontology Consortium. Nat 
Genet 25, 25-29. 
Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., 
Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-
resolution profiling of histone methylations in the human 
genome. Cell 129, 823-837. 
Benayoun, B.A., Pollina, E.A., Ucar, D., Mahmoudi, S., 
Karra, K., Wong, E.D., Devarajan, K., Daugherty, A.C., 
Kundaje, A.B., Mancini, E., et al. (2014). H3K4me3 
breadth is linked to cell identity and transcriptional 
consistency. Cell 158, 673-688. 
Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., 
Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., 
Tajonar, A., Ray, M.K., et al. (2006). Polycomb complexes 
repress developmental regulators in murine embryonic stem 
cells. Nature 441, 349-353. 
Burridge, P.W., Matsa, E., Shukla, P., Lin, Z.C., Churko, 
J.M., Ebert, A.D., Lan, F., Diecke, S., Huber, B., 
Mordwinkin, N.M., et al. (2014). Chemically defined 
generation of human cardiomyocytes. Nat Methods 11, 855-
860. 
Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and 
Satija, R. (2018). Integrating single-cell transcriptomic data 
across different conditions, technologies, and species. 
Nature Biotechnology 36, 411. 
Cahan, P., Li, H., Morris, S.A., Da Rocha, E.L., Daley, 
G.Q., and Collins, J.J. (2014). CellNet: network biology 
applied to stem cell engineering. Cell 158, 903-915. 
Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., 
Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., 
Steemers, F.J., et al. (2019). The single-cell transcriptional 

landscape of mammalian organogenesis. Nature 566, 496-
502. 
Carl, M., Loosli, F., and Wittbrodt, J. (2002). Six3 
inactivation reveals its essential role for the formation and 
patterning of the vertebrate eye. Development 129, 4057-
4063. 
Christiaen, L., Wagner, E., Shi, W., and Levine, M. (2009). 
Electroporation of transgenic DNAs in the sea squirt Ciona. 
Cold Spring Harb Protoc 2009, pdb prot5345. 
Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, 
T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., 
Frampton, G.M., Sharp, P.A., et al. (2010). Histone 
H3K27ac separates active from poised enhancers and 
predicts developmental state. Proc Natl Acad Sci U S A 107, 
21931-21936. 
D'Alessio, A.C., Fan, Z.P., Wert, K.J., Baranov, P., Cohen, 
M.A., Saini, J.S., Cohick, E., Charniga, C., Dadon, D., 
Hannett, N.M., et al. (2015). A Systematic Approach to 
Identify Candidate Transcription Factors that Control Cell 
Identity. Stem Cell Reports 5, 763-775. 
Duan, Q., McMahon, S., Anand, P., Shah, H., Thomas, S., 
Salunga, H.T., Huang, Y., Zhang, R., Sahadevan, A., 
Lemieux, M.E., et al. (2017). BET bromodomain inhibition 
suppresses innate inflammatory and profibrotic 
transcriptional networks in heart failure. Sci Transl Med 9. 
Eisenberg, E., and Levanon, E.Y. (2013). Human 
housekeeping genes, revisited. Trends Genet 29, 569-574. 
Evans Anderson, H., and Christiaen, L. (2016). Ciona as a 
simple chordate model for heart development and 
regeneration. Journal of cardiovascular development and 
disease 3, 25. 
Feng, J., Liu, T., Qin, B., Zhang, Y., and Liu, X.S. (2012). 
Identifying ChIP-seq enrichment using MACS. Nat Protoc 
7, 1728-1740. 
Forrest, A.R., Kawaji, H., Rehli, M., Baillie, J.K., de Hoon, 
M.J., Haberle, V., Lassmann, T., Kulakovskiy, I.V., Lizio, 
M., Itoh, M., et al. (2014). A promoter-level mammalian 
expression atlas. Nature 507, 462-470. 
Friedman, C.E., Nguyen, Q., Lukowski, S.W., Helfer, A., 
Chiu, H.S., Miklas, J., Levy, S., Suo, S., Han, J.-D.J., and 
Osteil, P. (2018). Single-cell transcriptomic analysis of 
cardiac differentiation from human PSCs reveals HOPX-
dependent cardiomyocyte maturation. Cell stem cell 23, 
586-598. e588. 
Fujikura, J., Yamato, E., Yonemura, S., Hosoda, K., Masui, 
S., Nakao, K., Miyazaki Ji, J., and Niwa, H. (2002). 
Differentiation of embryonic stem cells is induced by 
GATA factors. Genes Dev 16, 784-789. 
Grote, P., and Herrmann, B.G. (2013). The long non-coding 
RNA Fendrr links epigenetic control mechanisms to gene 
regulatory networks in mammalian embryogenesis. RNA 
Biol 10, 1579-1585. 
Haider, S., Ballester, B., Smedley, D., Zhang, J., Rice, P., 
and Kasprzyk, A. (2009). BioMart Central Portal--unified 
access to biological data. Nucleic Acids Res 37, W23-27. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2020. ; https://doi.org/10.1101/635516doi: bioRxiv preprint 

https://doi.org/10.1101/635516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., 
Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. 
(2010). Simple combinations of lineage-determining 
transcription factors prime cis-regulatory elements required 
for macrophage and B cell identities. Mol Cell 38, 576-589. 
Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-Andre, 
V., Sigova, A.A., Hoke, H.A., and Young, R.A. (2013). 
Super-enhancers in the control of cell identity and disease. 
Cell 155, 934-947. 
Jiang, Y., Qian, F., Bai, X., Liu, Y., Wang, Q., Ai, B., Han, 
X., Shi, S., Zhang, J., Li, X., et al. (2019). SEdb: a 
comprehensive human super-enhancer database. Nucleic 
Acids Res 47, D235-D243. 
Kanehisa, M., and Goto, S. (2000). KEGG: kyoto 
encyclopedia of genes and genomes. Nucleic Acids Res 28, 
27-30. 
Kharchenko, P.V., Tolstorukov, M.Y., and Park, P.J. 
(2008). Design and analysis of ChIP-seq experiments for 
DNA-binding proteins. Nat Biotechnol 26, 1351-1359. 
Kim, M.S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, 
S.S., Chaerkady, R., Madugundu, A.K., Kelkar, D.S., 
Isserlin, R., Jain, S., et al. (2014). A draft map of the human 
proteome. Nature 509, 575-581. 
Kiselev, V.Y., Kirschner, K., Schaub, M.T., Andrews, T., 
Yiu, A., Chandra, T., Natarajan, K.N., Reik, W., Barahona, 
M., Green, A.R., et al. (2017). SC3: consensus clustering of 
single-cell RNA-seq data. Nature Methods 14, 483. 
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., 
Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., 
Ziller, M.J., et al. (2015). Integrative analysis of 111 
reference human epigenomes. Nature 518, 317-330. 
Lagutin, O.V., Zhu, C.C., Kobayashi, D., Topczewski, J., 
Shimamura, K., Puelles, L., Russell, H.R., McKinnon, P.J., 
Solnica-Krezel, L., and Oliver, G. (2003). Six3 repression 
of Wnt signaling in the anterior neuroectoderm is essential 
for vertebrate forebrain development. Genes & 
development 17, 368-379. 
Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., 
Levine, S.S., Kumar, R.M., Chevalier, B., Johnstone, S.E., 
Cole, M.F., Isono, K., et al. (2006). Control of 
developmental regulators by Polycomb in human 
embryonic stem cells. Cell 125, 301-313. 
Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., 
Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N., et al. 
(2013). The Genotype-Tissue Expression (GTEx) project. 
Nat Genet 45, 580-585. 
Love, M.I., Huber, W., and Anders, S. (2014). Moderated 
estimation of fold change and dispersion for RNA-seq data 
with DESeq2. Genome Biol 15, 550. 
Ma, P., Yang, X., Kong, Q., Li, C., Yang, S., Li, Y., and 
Mao, B. (2014). The ubiquitin ligase RNF220 enhances 
canonical Wnt signaling through USP7-mediated 
deubiquitination of beta-catenin. Mol Cell Biol 34, 4355-
4366. 

Mandegar, M.A., Huebsch, N., Frolov, E.B., Shin, E., 
Truong, A., Olvera, M.P., Chan, A.H., Miyaoka, Y., 
Holmes, K., Spencer, C.I., et al. (2016). CRISPR 
Interference Efficiently Induces Specific and Reversible 
Gene Silencing in Human iPSCs. Cell Stem Cell 18, 541-
553. 
Margueron, R., and Reinberg, D. (2011). The Polycomb 
complex PRC2 and its mark in life. Nature 469, 343-349. 
Morris, S.A., and Daley, G.Q. (2013). A blueprint for 
engineering cell fate: current technologies to reprogram cell 
identity. Cell Res 23, 33-48. 
Nakamura, R., Tsukahara, T., Qu, W., Ichikawa, K., Otsuka, 
T., Ogoshi, K., Saito, T.L., Matsushima, K., Sugano, S., 
Hashimoto, S., et al. (2014). Large hypomethylated 
domains serve as strong repressive machinery for key 
developmental genes in vertebrates. Development 141, 
2568-2580. 
Nakatake, Y., Ko, S.B.H., Sharov, A.A., Wakabayashi, S., 
Murakami, M., Sakota, M., Chikazawa, N., Ookura, C., 
Sato, S., Ito, N., et al. (2020). Generation and Profiling of 
2,135 Human ESC Lines for the Systematic Analyses of 
Cell States Perturbed by Inducing Single Transcription 
Factors. Cell Rep 31, 107655. 
Paige, S.L., Thomas, S., Stoick-Cooper, C.L., Wang, H., 
Maves, L., Sandstrom, R., Pabon, L., Reinecke, H., Pratt, 
G., Keller, G., et al. (2012). A temporal chromatin signature 
in human embryonic stem cells identifies regulators of 
cardiac development. Cell 151, 221-232. 
Palpant, N.J., Pabon, L., Friedman, C.E., Roberts, M., 
Hadland, B., Zaunbrecher, R.J., Bernstein, I., Zheng, Y., 
and Murry, C.E. (2017a). Generating high-purity cardiac 
and endothelial derivatives from patterned mesoderm using 
human pluripotent stem cells. Nat Protoc 12, 15-31. 
Palpant, N.J., Wang, Y., Hadland, B., Zaunbrecher, R.J., 
Redd, M., Jones, D., Pabon, L., Jain, R., Epstein, J., Ruzzo, 
W.L., et al. (2017b). Chromatin and Transcriptional 
Analysis of Mesoderm Progenitor Cells Identifies HOPX as 
a Regulator of Primitive Hematopoiesis. Cell Rep 20, 1597-
1608. 
Peng, G., Suo, S., Chen, J., Chen, W., Liu, C., Yu, F., Wang, 
R., Chen, S., Sun, N., Cui, G., et al. (2016). Spatial 
Transcriptome for the Molecular Annotation of Lineage 
Fates and Cell Identity in Mid-gastrula Mouse Embryo. Dev 
Cell 36, 681-697. 
Perez-Lluch, S., Blanco, E., Tilgner, H., Curado, J., Ruiz-
Romero, M., Corominas, M., and Guigo, R. (2015). 
Absence of canonical marks of active chromatin in 
developmentally regulated genes. Nat Genet 47, 1158-1167. 
Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible 
suite of utilities for comparing genomic features. 
Bioinformatics 26, 841-842. 
Rackham, O.J., Firas, J., Fang, H., Oates, M.E., Holmes, 
M.L., Knaupp, A.S., Suzuki, H., Nefzger, C.M., Daub, C.O., 
and Shin, J.W. (2016). A predictive computational 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2020. ; https://doi.org/10.1101/635516doi: bioRxiv preprint 

https://doi.org/10.1101/635516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

framework for direct reprogramming between human cell 
types. Nature genetics 48, 331. 
Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., 
Flynn, R.A., and Wysocka, J. (2011). A unique chromatin 
signature uncovers early developmental enhancers in 
humans. Nature 470, 279. 
Rajabi, M., Kassiotis, C., Razeghi, P., and Taegtmeyer, H. 
(2007). Return to the fetal gene program protects the 
stressed heart: a strong hypothesis. Heart Fail Rev 12, 331-
343. 
Rehimi, R., Nikolic, M., Cruz-Molina, S., Tebartz, C., 
Frommolt, P., Mahabir, E., Clement-Ziza, M., and Rada-
Iglesias, A. (2016). Epigenomics-Based Identification of 
Major Cell Identity Regulators within Heterogeneous Cell 
Populations. Cell Rep 17, 3062-3076. 
Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., 
Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, 
P.J., Segal, E., et al. (2007). Functional demarcation of 
active and silent chromatin domains in human HOX loci by 
noncoding RNAs. Cell 129, 1311-1323. 
Russ, A.P., Wattler, S., Colledge, W.H., Aparicio, S.A., 
Carlton, M.B., Pearce, J.J., Barton, S.C., Surani, M.A., 
Ryan, K., Nehls, M.C., et al. (2000). Eomesodermin is 
required for mouse trophoblast development and mesoderm 
formation. Nature 404, 95-99. 
Schaum, N., Karkanias, J., Neff, N., May, A.P., S.R., Q., 
Wyss-Coray, T., Batson, J., Botvinnik, O., Chen, M.B., 
Chen, S., et al. (2018). Single-cell transcriptomics of 20 
mouse organs creates a Tabula Muris. Nature 562, 367-372. 
Schug, J., Schuller, W.P., Kappen, C., Salbaum, J.M., 
Bucan, M., and Stoeckert, C.J., Jr. (2005). Promoter features 
related to tissue specificity as measured by Shannon 
entropy. Genome Biol 6, R33. 
Scornavacca, C., Zickmann, F., and Huson, D.H. (2011). 
Tanglegrams for rooted phylogenetic trees and networks. 
Bioinformatics 27, i248-256. 
Scrucca, L., Fop, M., Murphy, T.B., and Raftery, A.E. 
(2016). mclust 5: Clustering, Classification and Density 
Estimation Using Gaussian Finite Mixture Models. The R 
journal 8, 289-317. 
Senabouth, A., Lukowski, S.W., Hernandez, J.A., 
Andersen, S.B., Mei, X., Nguyen, Q.H., and Powell, J.E. 
(2019). ascend: R package for analysis of single-cell RNA-
seq data. Gigascience 8. 
Sharov, A.A., Schlessinger, D., and Ko, M.S. (2015). 
ExAtlas: An interactive online tool for meta-analysis of 
gene expression data. J Bioinform Comput Biol 13, 
1550019. 
Steinmetz, P.R., Urbach, R., Posnien, N., Eriksson, J., 
Kostyuchenko, R.P., Brena, C., Guy, K., Akam, M., Bucher, 
G., and Arendt, D. (2010). Six3 demarcates the anterior-
most developing brain region in bilaterian animals. 
EvoDevo 1, 14. 
Stergachis, A.B., Neph, S., Reynolds, A., Humbert, R., 
Miller, B., Paige, S.L., Vernot, B., Cheng, J.B., Thurman, 

R.E., Sandstrom, R., et al. (2013). Developmental fate and 
cellular maturity encoded in human regulatory DNA 
landscapes. Cell 154, 888-903. 
Stolfi, A., Gandhi, S., Salek, F., and Christiaen, L. (2014). 
Tissue-specific genome editing in Ciona embryos by 
CRISPR/Cas9. Development 141, 4115-4120. 
Takahashi, K., and Yamanaka, S. (2006). Induction of 
pluripotent stem cells from mouse embryonic and adult 
fibroblast cultures by defined factors. Cell 126, 663-676. 
Takeuchi, J.K., and Bruneau, B.G. (2009). Directed 
transdifferentiation of mouse mesoderm to heart tissue by 
defined factors. Nature 459, 708-711. 
Tekendo-Ngongang, C., Owosela, B., Muenke, M., and 
Kruszka, P. (2020). Comorbidity of congenital heart defects 
and holoprosencephaly is likely genetically driven and 
gene-specific. Am J Med Genet C Semin Med Genet 184, 
154-158. 
Tian, L., Dong, X., Freytag, S., Le Cao, K.A., Su, S., 
JalalAbadi, A., Amann-Zalcenstein, D., Weber, T.S., Seidi, 
A., Jabbari, J.S., et al. (2019). Benchmarking single cell 
RNA-sequencing analysis pipelines using mixture control 
experiments. Nat Methods 16, 479-487. 
Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 
Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, 
C., Murphy, G., et al. (2016). Dissecting the multicellular 
ecosystem of metastatic melanoma by single-cell RNA-seq. 
Science 352, 189. 
Van Handel, B., Montel-Hagen, A., Sasidharan, R., Nakano, 
H., Ferrari, R., Boogerd, C.J., Schredelseker, J., Wang, Y., 
Hunter, S., Org, T., et al. (2012). Scl represses 
cardiomyogenesis in prospective hemogenic endothelium 
and endocardium. Cell 150, 590-605. 
Verfaillie, A., Imrichova, H., Atak, Z.K., Dewaele, M., 
Rambow, F., Hulselmans, G., Christiaens, V., Svetlichnyy, 
D., Luciani, F., Van den Mooter, L., et al. (2015). Decoding 
the regulatory landscape of melanoma reveals TEADS as 
regulators of the invasive cell state. Nat Commun 6, 6683. 
Viotti, M., Niu, L., Shi, S.H., and Hadjantonakis, A.K. 
(2012). Role of the gut endoderm in relaying left-right 
patterning in mice. PLoS Biol 10, e1001276. 
Waardenberg, A.J., Ramialison, M., Bouveret, R., and 
Harvey, R.P. (2014). Genetic networks governing heart 
development. Cold Spring Harb Perspect Med 4, a013839. 
Wang, W., Niu, X., Stuart, T., Jullian, E., Mauck, W.M., 
3rd, Kelly, R.G., Satija, R., and Christiaen, L. (2019). A 
single-cell transcriptional roadmap for cardiopharyngeal 
fate diversification. Nat Cell Biol 21, 674-686. 
Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, 
C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., and Young, R.A. 
(2013). Master transcription factors and mediator establish 
super-enhancers at key cell identity genes. Cell 153, 307-
319. 
Wilson, D., Charoensawan, V., Kummerfeld, S.K., and 
Teichmann, S.A. (2008). DBD--taxonomically broad 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2020. ; https://doi.org/10.1101/635516doi: bioRxiv preprint 

https://doi.org/10.1101/635516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

transcription factor predictions: new content and 
functionality. Nucleic Acids Res 36, D88-92. 
Wu, S.F., Zhang, H., and Cairns, B.R. (2011). Genes for 
embryo development are packaged in blocks of multivalent 
chromatin in zebrafish sperm. Genome Res 21, 578-589. 
Zhang, H.M., Liu, T., Liu, C.J., Song, S., Zhang, X., Liu, 
W., Jia, H., Xue, Y., and Guo, A.Y. (2015). AnimalTFDB 
2.0: a resource for expression, prediction and functional 
study of animal transcription factors. Nucleic Acids Res 43, 
D76-81. 
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, 
D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, 
M., Li, W., et al. (2008). Model-based Analysis of ChIP-
Seq (MACS). Genome Biology 9, R137. 
Zhong, Y.F., and Holland, P.W. (2011). HomeoDB2: 
functional expansion of a comparative homeobox gene 
database for evolutionary developmental biology. Evol Dev 
13, 567-568. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2020. ; https://doi.org/10.1101/635516doi: bioRxiv preprint 

https://doi.org/10.1101/635516
http://creativecommons.org/licenses/by-nc-nd/4.0/

