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ChromHMM outputs both the learned chromatin-state model 
parameters and the chromatin-state assignments for each genom-
ic position. The learned emission and transition parameters are 
returned in both text and image format (Fig. 1), automatically 
grouping chromatin states with similar emission parameters or 
proximal genomic locations, although a user-specified reordering 
can also be used (Supplementary Figs. 1–2 and Supplementary 
Note). ChromHMM enables the study of the likely biological 
roles of each chromatin state based on enrichment in diverse 
external annotations and experimental data, shown as heat maps 
and tables (Fig. 1), both for direct genomic overlap and at vari-
ous distances from a chromatin state (Supplementary Fig. 3).  
ChromHMM also generates custom genome browser tracks6 that 
show the resulting chromatin-state segmentation in dense view 
(single color-coded track) or expanded view (each state shown 
separately) (Fig. 1). All the files ChromHMM produces by default 
are summarized on a webpage (Supplementary Data).

ChromHMM also enables the analysis of chromatin states 
across multiple cell types. When the chromatin marks are com-
mon across the cell types, a common model can be learned by 
a virtual ‘concatenation’ of the chromosomes of all cell types. 
Alternatively a model can be learned by a virtual ‘stacking’ of all 
marks across cell types, or independent models can be learned in 
each cell type. Lastly, ChromHMM supports the comparison of 
models with different number of chromatin states based on cor-
relations in their emission parameters (Supplementary Fig. 4).

We wrote the software in Java, which allows it to be run on 
virtually any computer. ChromHMM and additional documenta-
tion is freely available at http://compbio.mit.edu/ChromHMM/.

ChromHMM: automating chromatin-
state discovery and characterization
To the Editor: Chromatin-state annotation using combinations 
of chromatin modification patterns has emerged as a powerful 
approach for discovering regulatory regions and their cell type–
specific activity patterns and for interpreting disease-association 
studies1–5. However, the computational challenge of learning 
chromatin-state models from large numbers of chromatin modi-
fication datasets in multiple cell types still requires extensive bio-
informatics expertise. To address this challenge, we developed 
ChromHMM, an automated computational system for learning 
chromatin states, characterizing their biological functions and 
correlations with large-scale functional datasets and visualizing 
the resulting genome-wide maps of chromatin-state annotations.

ChromHMM is based on a multivariate hidden Markov model 
that models the observed combination of chromatin marks using 
a product of independent Bernoulli random variables2, which 
enables robust learning of complex patterns of many chromatin 
modifications. As input, it receives a list of aligned reads for each 
chromatin mark, which are automatically converted into pres-
ence or absence calls for each mark across the genome, based on 
a Poisson background distribution. One can use an optional addi-
tional input of aligned reads for a control dataset to either adjust 
the threshold for present or absent calls, or as an additional input 
mark. Alternatively, the user can input files that contain calls from 
an independent peak caller. By default, chromatin states are ana-
lyzed at 200-base-pair intervals that roughly approximate nucleo-
some sizes, but smaller or larger windows 
can be specified. We also developed an 
improved parameter-initialization proce-
dure that enables relatively efficient infer-
ence of comparable models across differ-
ent numbers of states (Supplementary 
Note).

Figure 1 | Sample outputs of ChromHMM.  
(a) Example of chromatin-state annotation 
tracks produced from ChromHMM and visualized 
in the UCSC genome browser6, including 
dense view (top; single track), expanded view 
(bottom; separate tracks). (b,c) Heat maps 
for model parameters (b) and for chromatin-
state functional enrichments (c). The columns 
indicate the relative percentage of the genome 
represented by each chromatin state and relative 
fold enrichment for several types of annotation. 
CTCF, CTC-binding factor; WCE, whole-cell extract; 
TSS, transcription start site; TES, transcript end 
site; and GM12878 is a lymphoblastoid cell line.
Data in this example correspond to a previous 
model learned across nine cell types3.
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