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In this article, we propose a methodology for identifying predictive physiological patterns in the
absence of prior knowledge. We use the principle of conservation to identify activity that consistently
precedes an outcome in patients, and describe a two-stage process that allows us to efficiently
search for such patterns in large datasets. This involves first transforming continuous physiological
signals from patients into symbolic sequences, and then searching for patterns in these reduced
representations that are strongly associated with an outcome.

Our strategy of identifying conserved activity that is unlikely to have occurred purely by chance
in symbolic data is analogous to the discovery of regulatory motifs in genomic datasets. We build
upon existing work in this area, generalizing the notion of a regulatory motif and enhancing current
techniques to operate robustly on non-genomic data. We also address two significant considerations
associated with motif discovery in general: computational efficiency and robustness in the presence
of degeneracy and noise. To deal with these issues, we introduce the concept of active regions and
new subset-based techniques such as a two-layer Gibbs sampling algorithm. These extensions
allow for a framework for information inference, where precursors are identified as approximately
conserved activity of arbitrary complexity preceding multiple occurrences of an event.

We evaluated our solution on a population of patients who experienced sudden cardiac death
and attempted to discover electrocardiographic activity that may be associated with the endpoint
of death. To assess the predictive patterns discovered, we compared likelihood scores for motifs
in the sudden death population against control populations of normal individuals and those with
non-fatal supraventricular arrhythmias. Our results suggest that predictive motif discovery may
be able to identify clinically relevant information even in the absence of significant prior knowledge.
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1. INTRODUCTION

The subject of finding predictive elements has been extensively studied in a
wide variety of contexts including geodesic, medical, and financial data. In this
article, we present a motif discovery methodology for discovering precursors.
While we focus mainly on physiological datasets, we present general techniques
that may be broadly applicable to a wider group of signals.

We model prediction as the problem of identifying activity that consistently
precedes an event of interest. In the absence of any prior knowledge, this activity
can be discovered by observing multiple occurrences of the event and detecting
statistically significant commonalities in the data preceding it, by searching
for conserved elements unlikely to occur purely by chance prior to the event of
interest (Figure 1). To handle noise, we further adopt a relaxed view of conser-
vation, whereby precursors may approximately match or be altogether absent
on some observations of the event. A further practical consideration is that the
search be computationally efficient to handle large amounts of data resulting
from multiple observations.

This model of prediction is similar to the search for regulatory motifs in the
setting of computational biology. Motif discovery techniques operate on genomic
datasets and search for DNA sequences that are conserved across genomes.
We generalize this model and describe how the search for precursors to acute
clinical events can be carried out in an analogous manner, by first convert-
ing continuous physiological signals into an alphabetical representation, and
then mining this representation for conserved activity. A variety of random-
ized greedy algorithms can be used to efficiently carry out the search for such
patterns. We use techniques such as TCM and Gibbs sampling as the founda-
tion of our work, and enhance them to operate on data with highly divergent
background distributions of symbols, frequent noise and patterns of increased
degeneracy relative to genomic data.

The rest of this article describes the proposed unsupervised inference
methodology. While the techniques we suggest can be used on a variety of
signals and are sufficiently general-purpose, we motivate them in the more
concrete setting of searching for predictive activity in physiological signals. We
detail the challenges associated with such an approach and describe its benefits
and limitations.

Section 2 details the concept and challenges of representing continuous
physiological signals as symbolic strings. Section 3 presents a similar discus-
sion of the problem of detecting predictive motifs in string data. Section 4
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Fig. 1. Prediction through conservation in the context of a population of patients affected by a
common acute clinical event.

describes existing computational biology algorithms for motif detection, while
Section 5 proposes data transformations and algorithms (including a two-level
Gibbs sampling technique) that have been augmented to search for motifs in a
computationally-efficient manner in the presence of noise and degeneracy. An
application of our work to sudden cardiac death data is discussed in Section
6. Related work is presented in Section 7. Finally, a summary and conclusions
appear in Section 8.

2. SYMBOLIZATION

2.1 Symbolic Representation of Physiological Data

The notion of representing physiological signals as symbolic sequences follows
from the quasi-periodic nature of many important signals. For example, data
from the heart and lungs often comprises units such as heart beats or breaths,
which are repetitive. It is often more natural to analyze physiological signals
in terms of these units than at the level of raw samples.

We use the property of quasi-periodicity in physiological signals to determine
appropriate boundaries for segmentation, and then replace each unit with a
single symbol. In doing so, we exploit the underlying repetitive structure and
redundancy to obtain a layer of data reduction. The raw physiological data is
reexpressed to retain salient differences between units of quasi-periodic activ-
ity while abstracting away the common structure. For example, as shown in
Figure 2, raw ECG data can be partitioned at the level of heart beats into dif-
ferent equivalence classes, each of which is assigned a unique alphabetic label
for identification. This reduces the data rate from around 4000 bits/second (for
a beat lasting one second in a signal sampled at 360 Hz with 11 bit quanti-
zation) to n bits/second (where n depends upon the number of bits needed to
differentiate between symbols, two for this case).

The data reduction introduced by symbolization reduces the search space for
the detection of interesting activity and provides a significant computational
advantage over working in the original space of the raw signal. A further ad-
vantage of using symbolization is that it implicitly abstracts away some of the
time-normalization issues that complicate the use of cross-correlation and other
techniques that operate on raw time samples.
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Fig. 2. Example transformation of continuous ECG waveform to a string of symbols. Each of the
symbols shown corresponds to a different class of electrophysiological activity.

2.2 Creating Symbolic Representations

To transform continuous waveforms into a string representation that can be
mined for patterns more efficiently, we propose segmenting the original signal
into intervals and then assigning an alphabetic label to each token. This effec-
tively transforms the original data into a sequence of symbols, and maps the
problem into the domain of string algorithms.

The task of assigning labels can be carried out in a number of different
ways. One approach is to use clinical information to partition segmented tokens
into equivalence classes. This approach provides a set of symbols that have a
fixed meaning in a medical context and can be shared across a population.
For example, the ECG signal in Figure 3 can be decomposed into RR-intervals
as shown (each RR-interval corresponds to the period between two successive
contractions of the ventricles of the heart: the period between successive sharp
spikes in the raw ECG tracings). Each RR-interval can then be labeled using
existing annotations for electrophysiological activity. RR-intervals associated
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Fig. 3. Example symbolization of continuous ECG waveforms using clinical annotations (N =
normal, V = premature ventricular contraction).

with normal heart beats are labeled N , while those associated with abnormal
contractions originating from ventricular regions are labeled V .

The approach of using clinical annotations is restricted to detecting predic-
tive activity that expresses itself in terms of known clinical classes. It does
not allow for the isolation of changes at the level of variations within par-
ticular classes. This is important because the granularity of later analysis is
constrained by the granularity of labeling.

From a knowledge discovery goal, it is appealing to derive the alphabet for
symbolization directly from the data itself. Techniques such as those in Syed
et al. [2007] can be employed to achieve this goal. While the approach of gen-
erating a patient-specific symbolic representation is powerful in its ability to
capture significant changes across a patient, it poses the problem that the clus-
ters are derived separately for each patient. This restricts comparisons across
a population. A possible means for addressing this issue is to use a semisu-
pervised approach where the symbols derived for each patient are related by a
human expert. This allows for the symbols to be dynamically derived based on
characteristics inherent in the data itself, and for these symbols to be related
and compared across a population.

At present, registering patient-specific symbols in a fully automated man-
ner across a population represents an area of continuing work. The discussion
that follows therefore focuses on the use of clinical annotations (or of semi-
supervised symbols related manually across patients) despite the possible ben-
efits of patient-specific symbols.

3. PHYSIOLOGICAL MOTIFS

3.1 Physiological Motifs in Symbolic Data

In the setting of computational biology, regulatory motifs correspond to
short DNA sequences that regulate gene expression. This notion of a ge-
netic switch that controls activity further downstream is well-suited to our
model for prediction. We generalize this idea and choose to model regula-
tory motifs as sequential triggers that precede abrupt clinical events and are
conserved across a population of patients owing to an association with the
event.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 1, Article 2, Publication date: January 2010.



2:6 • Z. Syed et al.

A recent strategy for regulatory motif discovery that has gained popularity
is to make use of comparative genomics [Kellis et al. 2003]. This allows for the
discovery of regulatory elements by exploiting their evolutionary conservation
across related species. Under this approach, regulatory motif discovery can be
viewed computationally as finding sequences that are recurrent is a group of
strings, upstream of specified endpoints.

The problem of regulatory motif discovery can be stated more formally in
either a combinatorial or probabilistic framework [Jones and Pevzner 2004].
While the two frameworks both attempt to identify similar preceding subse-
quences, they may lead to slightly different results and require distinct algo-
rithmic techniques.

—Combinatorial. Given a set of sequences {s1, . . . , sN }, find a subsequence m1,
. . . , mW that occurs in all si with k or fewer differences.

—Probabilistic. Given a set of sequences {s1, . . . ,sN }, find a set of starting po-
sitions {p1, . . . ,pN } in the sequences that lead to the best (as defined in the
following) A × W profile matrix M (where A is the number of different sym-
bols in the data and W is the length of the motif).

For the probabilistic case, the profile matrix is derived from the subsequences
of length W immediately following the starting positions p1, . . . , pN in each of
s1, . . . , sN . These subsequences are lined up and the probability of each of the
A unique symbols at every one of the W motif positions is estimated. M (x, y)
then gives the probability that the motif has character x at position y . The
resulting profile matrix can be scored using different criteria with the implicit
goal of seeking a nontrivial profile that is strongly conserved at each position
and best explains the data. The scoring function most often used is the log-odds
likelihood:

score =
N∑

i=1

W∑
j=1

log
[

M (si(pi + j − 1), j )
B(si(pi + j − 1))

]
, (1)

where B gives the background distribution of each unique symbol in the data.
Effectively, this calculates the log-likelihood of a motif while compensating for
trivial occurrences that would be seen in the data merely due to the frequent
occurrence of certain symbols.

3.2 Challenges Associated with Motif Detection in Symbolic Signals

The problem of motif discovery gives rise to a number of issues in the physiolog-
ical setting. This section discusses the major challenges faced when modeling
acute clinical events as physiological motifs.

3.2.1 Symbol Distribution Skews. A complication arising in the context
of physiological signals is that of the sparsity of abnormal activity. Periods
with interesting events are typically separated by long, variable-sized runs
of normal behavior—the distribution of the symbols is significantly skewed
in favor of normal labels. This increases the number of trivial motifs in the
data and consequently the running time of the motif discovery algorithms. In
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addition, for algorithms such as TCM and Gibbs sampling, discussed in Section
4, a secondary effect resulting from the presence of long stretches of normal
behavior is that the starting locations chosen randomly may often correspond
to uninteresting regions of the signal, further increasing time to convergence.

3.2.2 Motif Degeneracy. The issue of degeneracy is frequently encountered
in DNA sequences and assumes a critical role for physiological motifs as well.
Predictive patterns may be approximately conserved across some patients in a
population, while in others, they may be missing altogether. This results from a
variety of factors, including differences in the age, gender, clinical history, med-
ications, and lifestyle of patients, as well as noise obscuring predictive patterns
in some recordings.

The goal of detecting imperfectly conserved activity represents a significant
challenge to the task of discovering precursors. Since patterns can vary, the
process of determining whether a pattern appears in a patient, is required to
explore a large search space, spanning all possible variations. Similarly, the
fact that some patients may have the predictive activity obscured due to noise
requires recognizing these cases and preventing motif discovery algorithms
from forcibly incorporating this data in the search process.

4. COMPUTATIONAL BIOLOGY ALGORITHMS FOR MOTIF DISCOVERY

In this section, we review three popular algorithms for finding regulatory motifs
using comparative genomics; the Two Component Mixture (TCM) algorithm
using expectation-maximization, Gibbs sampling, and Consensus. TCM and
Gibbs sampling attempt to solve the probabilistic formulation of motif discovery,
while Consensus focuses on the combinatorial problem.

4.1 Two Component Mixture (TCM)

TCM is an enhancement to the basic EM algorithm [Bailey and Elkan 1995],
which essentially reduces the search into two smaller, decoupled problems. The
first (the M-step) involves constructing the profile for a motif given a set of fuzzy
starting positions p1, . . . , pN in the input sequences (the M-step). The second
(the E-step) then uses this matrix profile representation to score all possible
starting positions in every sequence and then update the initial p1, . . . ,pN .

The overall TCM algorithm operates in the following manner.

TCM Algorithm

TCM({s1, . . . , sN }, W ):
1. Set random starting positions p1, . . . , pN

2. Do
I. M-step to update profile matrix
II. E-step to update starting positions
Until the change in the score of M is less than some threshold ε.

The M-step of TCM estimates the profile matrix using the probability Zij
that the motif starts in sequence i at position j . As a first step, the values nc,k ,
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which indicate how often the character c occurs at position k in the motif, are
estimated.

nc,k =

⎧⎪⎪⎨
⎪⎪⎩

∑
i

∑
j | si, j =c

Zi j k > 0

nc −
W∑

j=1
nc, j k = 0

(2)

k = 0 represents the case where character c occurs in the sequence outside the
motif, while nc gives the total number of times c occurs in the data. Using these
values, we can obtain a profile matrix M as follows:

Mc,k = nc,k + dc,k∑
a

(
na,k + da,k

) , (3)

where dc,k denotes the pseudocount for character c and helps ensure that the
probability of c at position k is not zero while estimating frequencies from finite
data [Bailey and Elkan 1995].

In addition to computing the profile matrix during the M-step, TCM also
calculates a prior probability that a motif might start arbitrarily at any position
in the data. This is denoted by λ and is obtained by taking the average of Zij
across all sequences and positions.

TCM primarily differs from other EM approaches to motif discovery in its
E-step. For every sequence si in the dataset, TCM assigns a likelihood Lij to
the W -mer starting at each position j :

Lij (1) = Pr(si j |Zij = 1, M , b) =
j+W−1∏

k= j

Mk− j+1,ck (4)

and

Lij (0) = Pr(si j |Zij = 0, M , b) =
j+W−1∏

k= j

bck , (5)

where b gives the background probability for each character in the dataset. For
iteration t of TCM, the values of Zij can then be estimated using:

Z (t)
i j = L(t)

i j (1)λ(t)

L(t)
i j (0)

[
1 − λ(t)

] + L(t)
i j (1)λ(t)

. (6)

4.2 Gibbs Sampling

Gibbs sampling [Gert et al. 2002] can be viewed as a stochastic analogue of EM
for finding regulatory motifs and is less susceptible to local minima than EM.
It is also much faster and uses less memory in practice. This is because unlike
EM, the Gibbs sampling approach keeps track only of the starting locations,
p1, . . . ,pN , of the motif in each sequence and does not maintain a distribution
over all possible starting positions for the motif (the Zij in TCM representing
fuzzy starting positions, are replaced by hard p1, . . . ,pN ).
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The Gibbs sampling algorithm for motif discovery can then be written as
follows.

Gibbs Sampling Algorithm

GIBBS({s1, . . . , sN }, W ):
1. Set random initial values for p
2. Do

i. Select sequence si at random
ii. Estimate M from set {s1, . . . ,sN }-si

iii. Use M to score all starts in si

iv. Pick start pi with probability proportional to its score
Until the change in the score of M is less than some threshold ε .

Gibbs sampling is less dependent on the initial parameters than TCM and
therefore more versatile. However, it is dependent on all sequences having the
motif. This is an inefficiency we address in our work.

4.3 Consensus

Consensus [Stormo and Hartzell 1989] is a greedy motif clustering algorithm
that picks out two sequences at random, finds the most conserved pairs among
them and then iterates over all the remaining sequences adding the W -mers
that best match the results of the previous iteration at every stage.

The Consensus algorithm is as follows.

Consensus Algorithm

CONSENSUS({s1, . . . , sN }, W ):
1. Pick sequences si and sj at random
2. Find most similar W -mers in si and sj

3. For each unprocessed sequence sk

i. Expand solution set with W -mers from sk that match best with previous ones.

5. DATA TRANSFORMATIONS AND SUBSET-BASED TECHNIQUES

5.1 Active Regions

The issue of skewed symbol distributions can be addressed by removing long
stretches of activity that are known to be uninteresting. By definition, a predic-
tive motif is associated with an acute clinical event and must be associated with
abnormal activity. As a result, trivial motifs comprising normal activity can be
trimmed away to reduce the running time associated with the motif-discovery
algorithms. For example, given the sequence:

V JV J J N N N N N N N N N N N V N V N B B r,

a possible reduction of this data would be:

V J V J J N + V N + V N + B B r.
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This technique is associated with a significant loss of information. Specif-
ically, the search for motifs proceeds in the transformed space, and the N+
regular expression may occur in motifs without a consistent meaning (it may
be arbitrarily long in some patients). The more general issue here is that con-
servation of a pattern in the transformed space does not imply conservation in
the original signals.

To avoid this issue, we identify regions of abnormal activity—active regions—
by splicing out trivial periods in the signal. Given a motif length W , this involves
iterating over the data and removing all normal symbols that would occur only
in trivial motifs. This approach preserves the temporal structure of abnormal
stretches of the signal, ensuring that the motifs correspond to patterns that are
conserved in all of the original signals. For example, using this approach for a
motif of length 3, the original example pattern would map to:

V J V J J N N V N V N B B r.

5.2 Gibbs2 and Seeded Consensus

The Gibbs sampling algorithm in Section 4 assumes that a motif is present in
all sequences. To deal with the issue of degeneracy, where noise may obscure the
predictive pattern completely for some patients, we propose a new algorithm
that provides a layer of robustness while dealing with a population where activ-
ity may be altogether absent in some of the observed examples. This is achieved
by adding a second layer of Gibbs sampling to the original algorithm, leading
to the Gibbs2 algorithm presented here.

The Gibbs2 algorithm operates at any time on a working subset V =
{v1, . . . , vC} of the original sequences {s1, . . . , sN }. Sequences are dynamically
swapped into and out of this set with the goal of replacing poor matches with
potentially better options. The underlying goal is to arrive at a cluster of se-
quences that share a strongly conserved motif.

The initial subset of sequences is chosen at random, and at each iteration, a
single sequence, vi, in the working set is scored at every position pi, using the
profile generated from V –vi, i.e.:

score (vi (pi)) =
W∑

j=1

log
[

M (si(pi + j − 1), j )
B(si(pi + j − 1))

]
. (7)

With some probability, vi is swapped out and replaced by one of the sequences
outside the working set. The probability of being swapped out varies inversely
with the maximum score seen for the sequence at any position, the score at the
position that corresponds most strongly to the profile matrix:

log[Pr(swap)] ∝ −maxpi[score(vi(pi))]. (8)

The proportionality factor depends on the length of the motifs being searched
for.

The intuition behind the Gibbs2 algorithm is that if a sequence scores high
for a motif, it matches quite well with other sequences used to derive the profile
and is retained with a higher probability. Conversely, if a sequence does not
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score highly, it matches poorly with the remaining sequences in the working
set used to derive the profile.

Ideally, the sequence swapped out should be replaced by one that scores
highest on the profile matrix being used. This approach is computationally
intensive since all outstanding sequences need to be scored before the optimal
one can be chosen. To avoid this, once a sequence is swapped out, it is replaced
by any of the sequences outside the working set at random. This avoids the
need to score all previously excluded sequences to find the one with the best
match. Furthermore, after each swap, further swapping is temporarily disabled
to allow the new sequence to be absorbed and contribute to the profile matrix.

The Gibbs2 algorithm can be written as follows (with C denoting the size
of the working set and K representing the number of iterations, swapping is
disabled after a sequence is replaced from one outside the working set):

Gibbs2 Algorithm

GIBBS2({s1, . . . , sN }, W , C, K ):
1. Choose C sequences at random from {s1, . . . , sN }
2. Set random initial values for p
3. Do

i. Select sequence vi at random
ii. Estimate M from set V − vi

iii. Use M to score all starts in vi

iv. Swap out vi with Pr(swap) and replace it with a random sequence outside the
working set

v. If swap occurs,
a. Disable swapping for K iterations

vi. Pick start pi with probability proportional to its score
Until the change in the score of M is less than some threshold ε.

The Gibbs2 approach can be used to iteratively partition the data into a set
containing a strongly conserved motif and an outstanding set that can be broken
into further subsets sharing a common pattern. This allows for the discovery
of multiple predictive motifs occurring in subsets of the population.

We propose choosing the working set size by studying how the log-odds like-
lihood of motifs changes for different selections of C. The average contribution
to the log-odds likelihood by each sequence in the working set can be measured
using (1) as:

1
C

C∑
i=1

W∑
j=1

log
[

M (si(pi + j − 1), j )
B(si(pi + j − 1))

]
. (9)

As sequences are added to the working set, the average contribution mea-
sured in (9) decreases significantly if the addition of a further sequence pre-
vents the working set from sharing a common motif—if the additional sequence
does not allow a strong motif to be identified. The size of the working set for
the Gibbs2 algorithm can therefore be determined by searching for a knee in
the curve relating the average contribution to the log-odds likelihood by each
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sequence with C. This process may be approximated by a binary search to re-
duce computation.

The use of Gibbs2 also allows for the performance of the Consensus algorithm
from Section 4 to be improved. Specifically, Consensus can be seeded using a
strongly conserved pattern obtained by Gibbs2. This reduces the likelihood that
Consensus will be affected by a poor choice of the initial two strings.

6. EVALUATION

6.1 Testing Methodology

We applied our techniques to the Physionet Sudden Cardiac Death Holter
Database (SDDB) [Goldberger et al. 2000]. This database contains several hours
of ECG data recorded using Holter monitors from 23 patients who experienced
sudden cardiac death. The recordings were obtained in the 1980s in Boston area
hospitals and were compiled as part of a later study of ventricular arrhythmias.
Owing to the retrospective nature of this collection, there are important limita-
tions. Patient information including drug regimens and dosages is limited, and
sometimes completely unavailable. Furthermore, sudden cardiac death may
result from a variety of underlying causes and it is likely that among the 23
patients there are multiple groups sharing different regulatory factors. Despite
these shortcomings, the SDDB ECG signals represent an interesting dataset
since they represent a population sharing a common acute event. In addition,
the recordings are sufficiently long (up to 24 hours prior to death in some cases)
that it is likely the predictive factors occurred during the recording period. Fi-
nally, the signals in SDDB are generally well-annotated, with cardiologists
providing labels at the level of each beat, and this yields a source of clinically
relevant symbols that can be used to search for motifs.

For the 23 SDDB patients TCM, Gibbs sampling, Gibbs2, and Consensus
were used to discover potentially predictive motifs of lengths 4, 10, and 16.
Since TCM, Consensus and the variants of the Gibbs sampling algorithms, are
stochastic in nature, a hundred runs were executed with the strongest motifs
being automatically returned as the solution. The scoring function used was
the log-likelihood score described in Section 3.

In each case, the endpoint used to signify the acute event associated with
death was the occurrence of ventricular fibrillation (VF). This was annotated
for all patients and only regions preceding VF were searched for conserved
motifs.

For visualization purposes, we used WebLogo [Crooks et al. 2004] to display
the motifs returned by our algorithms. This uses the profile matrix to represent
motifs as sequence logos, which are graphical representations consisting of
stacks of symbols. For each position in the motif, the overall height of the stack
indicates how strongly the motif is conserved at that position, while the height
of symbols within the stack indicates the relative frequency of each symbol at
that position. For example, for the length 10 motif in Figure 4, the sequence
logo shows that the motif is strongly conserved at positions 8 and 10, where
the predictive sequence was found to contain normal beats across patients. The
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motif is also conserved at positions 1, 3, and 5, where ventricular activity was
seen for most patients, with some occurrences of normal beats (position 1) and
supraventricular beats (positions 3 and 5) as well.

For position j in the motif, the height of symbol i at that location is given
by:

M (i, j )[2 − H( j )], (10)

where:

H( j ) = −
∑

k

M (k, j )log2(M (k, j )). (11)

For Consensus, where a profile matrix is not explicitly constructed, the best-
matching subsequences were used to derive a profile that could be represented
using WebLogo. This allowed for results to be consistently visualized, irrespec-
tive of the algorithm used to discover motifs.

More information on WebLogo can be found at their Web site.1

6.2 Data Reduction

The transformations discussed in Section 5 can be evaluated in terms of the data
compression realized using these approaches. This allows for an appreciation
of the extent to which the original data contains long runs of normal activity
that can be compacted. The original sequences across the 23 patients contained
1,216,435 symbols in total, each corresponding to a single beat annotated by
a skilled cardiologist. Using the notion of active regions and stripping away
uninteresting normal motifs reduced the size of the data to 257,479 characters—
a reduction of 78.83%.

6.3 TCM, Gibbs Sampling, and Consensus

Figures 4–6 present the results returned by TCM, Gibbs sampling, and Con-
sensus, as sequence logos. Commonly occurring labels are N = normal, V =
premature ventricular contraction, and S = supraventricular premature or ec-
topic beats.

The motifs discovered by all three algorithms were similar and comprised
runs of premature ventricular contractions. For each choice of motif length,
TCM returned more strongly conserved motifs than both Gibbs sampling and
Consensus. This can be explained by the fact that TCM scores all starting po-
sitions in every sequence during each iteration, and is stochastic only in the
choice of an initial profile matrix. It employs significantly more computation
than either Gibbs sampling or Consensus and is able to find more strongly con-
served patterns as a result. On the other hand, the Gibbs sampling algorithm
depends on both a random set of initial starting positions and probabilistic
choices during each iteration to select a string, si, and a new starting position
within that string. Consensus is similar to TCM in that it is stochastic only in its
initial choice of sequences to use as seed, but unlike TCM, where a poor initial

1http://weblogo.berkely.edu
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Fig. 4. Motifs of length 4, 10, and 16 found using TCM.

Fig. 5. Motifs of length 4, 10, and 16 found using Gibbs sampling.

choice can be corrected during subsequent iterations, in the case of Consensus,
the effects of a poor initial choice propagate all the way through.

Although TCM produced the best results in this case, the process of scoring
every starting position in each sequence was considerably more time consum-
ing and took an order of magnitude more time than either Gibbs sampling or
Consensus.

6.4 Gibbs2 and Seeded Consensus

Figure 7 shows the motifs discovered by the Gibbs2 algorithm with an initial
working set of size 12, containing sequences chosen at random. The size of
the initial working set was determined from the average contribution of each
sequence to the log-odds likelihood of the best scoring motif, as described in
Section 5.2. Figure 8 illustrates how the average contribution of the log-odds
likelihood changed with increased values of C.

In this case, the predictive motif once again found comprised runs of prema-
ture ventricular contractions, but was more strongly conserved than the best
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Fig. 6. Motifs of length 4, 10, and 16 found using Consensus.

Fig. 7. Motifs of length 4, 10, and 16 found using Gibbs2.

results produced earlier by TCM, Gibbs sampling, and Consensus. Specifically,
comparing Figures 4–7, the stack of symbols in Figure 7 shows the premature
ventricular activity figuring more prominently at positions within the motifs.

This effect may be attributed to the ability of Gibbs2 to select a group of pa-
tients who had matching motifs comprising premature ventricular activity, un-
like TCM, Gibbs sampling, and Consensus, which were constrained to find a less
conserved intermediate that was a best fit for data from all the different patients
in the population. For this reason, Gibbs2 provided an improvement not only
over the original Gibbs sampling algorithm but also the more computationally
intensive TCM. The Gibbs2 algorithm has the same basic structure as the origi-
nal Gibbs sampling technique, but is able to outperform TCM by addressing the
issue of subsets of the population exhibiting different regulatory activity. Sec-
tion 6.5 explores this aspect of subset-based algorithms in more detail, and mo-
tivates the idea of searching for different motives in subpopulations iteratively.

Figure 9 presents the result of using Seeded Consensus to detect motifs of
length 4 relative to the original Consensus algorithm. In this case, the Gibbs2

algorithm with a working set of size 5 was used to first find an initial seed for
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Fig. 8. Relation of the average contribution of each sequence to the log-odds likelihood for the best
scoring motif with increasing values of C.

Fig. 9. Motifs of length 4 found using Consensus (top) and Seeded Consensus (bottom).

the Consensus algorithm. As the data shows, Seeded Consensus produced more
strongly conserved results than the original Consensus algorithm. This effect
followed from reducing the chance that a poor initial choice of sequences would
propagate and adversely affect the search for motifs.

The motif found using Seeded Consensus in Figure 9 is not as strongly con-
served as the one discovered by Gibbs2 in Figure 7. This can be explained by the
fact that Seeded Consensus uses Gibbs2 to discover an initial seed but otherwise
still operates on all the sequences in the data. The issue of motifs occurring only
in a subset of patients does not therefore get addressed, although Seeded Con-
sensus is still able to produce results that are comparable with TCM without
the need for intensive computation.

The results of these experiments suggest that subset based techniques using
Gibbs2 either to search for motifs directly, or for the purpose of providing seeds
that can be fed into the Consensus algorithm, may allow for more strongly con-
served motifs to be discovered than through use of TCM, Gibbs sampling, and
the original Consensus algorithm. Moreover, the improvement provided by the
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Fig. 10. Two-stage Gibbs2 motifs of length 4. The top motif comprises a working set of size 12,
while the second motif corresponds to those 11 sequences (from a total population of 23) that were
not included in the original working set.

Gibbs2 algorithm proposed in our work is not associated with a significant com-
putational overhead. In addition, the ability to partition the data into groups
with homogenous motifs allows for the discovery of more than one predictive
pattern, each of which may be associated with the outcome in a different group
of patients. We explore this idea in more detail in the next section.

6.5 Two-Stage Gibbs2

For the motif of length 4, the sequences remaining outside the working set
at the termination the of Gibbs2 algorithm were searched for a second motif
common to this group. Figure 10 shows the results of this approach.

In this case, a second motif comprising runs of supraventricular premature
or ectopic beats was found among this subgroup of the population. Notably,
these patients did not show a motif similar to the ones found earlier, compris-
ing premature ventricular beats, during any of the multiple executions of the
motif discovery algorithm. This suggests that the subset of patients left out-
side the working set by Gibbs2 did not exhibit regulatory activity similar to
the ones for whom a premature ventricular motif was discovered. Including
these patients in the search for a predictive motif, as would be the case for non-
subset-based techniques, would therefore lead to a less informative motif and
would obscure the fact that different groups of patients show varied predictive
patterns associated with an endpoint.

6.6 Motif-Event Delay

Using the motif of length 10 shown in Figure 7, for each sequence, the time
delay between the starting location of the motif: pi, and the clinical endpoint
(the occurrence of VF in the patients) was calculated for the Gibbs2 algorithm.
For one of the 23 patients in the dataset, the motif occurred less than a minute
prior to the event itself. In all other cases, the motif discovered preceded the
actual event by at least 20 minutes or more. The median motif-event delay was
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Fig. 11. Motif-matching scores for patients in the Sudden Death Database (SDDB), Supraven-
tricular Arrhythmia Database (SVDB), and Normal Sinus Rhythm Database (NSRDB). The graph
shows the probability distributions estimated using kernel density estimation.

60 minutes, while the 25% and 75% quartile times were 42 and 179 minutes
respectively. The maximum time separation of the motif and the event was 604
minutes.

These results suggest that the motif occurred sufficiently in advance of the
endpoint not to be considered merely an extension of the final event itself.
Furthermore, the fact that the motif may occur at a wide range of times prior to
the endpoint reinforces the need to carry out the search for predictive patterns
in an automated manner, which is able to relate information across a range of
positions within each sequence.

6.7 Comparison with Controls

For each patient in the SDDB population, the log-likelihood score was calcu-
lated for each starting position in the ECG label sequence. The overall score
for the patient was the maximum log-likehood score found. Intuitively, this
strategy assigns each patient the risk score associated with the occurrence of
the discovered motif of length 10 shown in Figure 7 at any point during the
recording: if activity similar to the motif associated with sudden death is seen
anywhere, the patient is assumed to be at higher risk for the event.

Figure 11 shows the probability density function that can be estimated from
the scores for the SDDB population. A similar strategy was adopted to score pa-
tients in two control datasets: the Physionet Normal Sinus Rhythm Database
(NSRDB) and the Physionet Supraventricular Arrhythmia Database (SVDB).
The decision to use SVDB data in addition to normal individuals was owing to
the fact that the SVDB signals contained the same labels as the SDDB data with
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a higher background frequency of abnormal symbols. This ensured that a dif-
ference in scores across populations did not result from an absence of labels, but
more so because activity was organized in different forms. Specifically, 1.45%
of the beats in the SDDB data were premature ventricular contractions. By
comparison, 5.39% of the beats in the SVDB signals and 0.002% of the NSRDB
beats fell into the same category. This suggests that if the motifs seen in the
SDDB population were random occurrences, then they would be expected to
be seen more frequently in the SVDB dataset. With this in mind, the fact that
SVDB patients had a higher percentage of premature ventricular activity but
still scored lower on the discovered motifs provides further indication that the
motif corresponded to activity that was not purely a random occurrence in the
sudden death population.

Using a maximum likelihood separator, we were able to use our motif to
correctly identify 70% of the patients who suffered sudden cardiac death during
24 hours of recording while classifying none of the normal individuals, and
only 8% of the patients from the supraventricular dataset as being at risk. The
small number of patients in the dataset, however, does not allow for us to make
statistically significant clinical statements about these findings.

7. RELATED WORK

In this section, we review existing knowledge-discovery work to detect poten-
tially predictive activity. A discussion of aspects of our work extending compu-
tational biology techniques appears earlier in Sections 3 and 4.

An extensive literature exists in the areas of data mining and machine learn-
ing on the subject of prediction. A common approach is to infer prediction rules
from data of the form:

IF cond1 AND . . . condi . . . AND condm THEN pred.

These rules correspond to a set of conditions associated with a specific outcome.
The challenge in this case is to select conditions that are able to distinguish be-
tween whether an event occurs or not, but do not overfit available training data.
A number of different techniques exist for this purpose, ranging from decision
trees [Helmbold and Schapire 1997] to more recent work using evolutionary
algorithms [Freitas 2001].

We supplement this work by finding precursors that exist at a lower level of
the data. As an alternative to rules based on the outcomes of a series of diagnos-
tic tests or a sophisticated feature set, we attempt to find interesting patterns
by analyzing the specific sequences a system moves through. The motivation for
such an approach is provided by the ever-increasing amounts of data collected
in various fields, for example, medicine, geodesic studies, space, and planetary
sciences. In many of these cases, well-formulated predictive attributes do not
exist. Unsupervised techniques can, however, be used to decompose signals into
stationary or periodic tokens. These can then be assigned labels to reexpress
the original data as a sequence of symbols. Our work allows for the discov-
ery of a specific class of regulatory activity (occurring as subsequences) in this
representation without assuming higher-level features for classification.
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The idea of transforming time-series data into symbols has been proposed
in different forms earlier (an excellent review on this subject can be found in
Daw et al. [2003] with some additional techniques for symbolization described
in Giles and Lawrence [2001]; Lin et al. [2003]; and Syed et al. [2007]). We
build upon this work and use symbolization in the context of large physiological
datasets to make the search for predictive patterns more efficient.

While symbolization is an integral component of our approach, we note that
there has also been much promising work in recent years on the discovery of
motifs directly in time-series signals. These approaches search for patterns ei-
ther in the raw signal without any transformation [Chiu et al. 2003], or by
using piecewise aggregate approximation (PAA) [Patel et al. 2002; Lin et al.
2002] to achieve a simple yet efficient symbolization. The focus in both these
cases is on the discovery of patterns that occur frequently in the data. These
methods do not explicitly address the goal of prediction and are not designed to
find patterns that may occur infrequently but have a consistent regulatory
effect. The discovery of such patterns, e.g., those associated with an acute
endpoint, is a potentially more computationally intensive problem, whereas
symbolization plays an important role in making the search process more
scalable.

Our pattern discovery algorithms add to an extensive body of existing work to
analyze symbolic sequences. A fairly rich literature can be found on techniques
to discover local patterns [Mannila et al. 1999; Jin et al. 2002], frequent sequen-
tial associations [Harms et al. 2002], and generalized episodes [Mannila et al.
1997]. These methods search for sequences of discrete events or symbols that
occur frequently in the data with a partially specified order. This information
can help make future predictions about the behavior of symbolic sequences. For
example, the observation that symbols A and B frequently occur in the data and
are always followed by symbol C allows for the symbol C to be predicted when-
ever A and B are next encountered. Such techniques address a similar goal to
our work and offer the advantage of finding more general predictive patterns
than our methods. However, these methods are fundamentally focused on the
discovery of frequent patterns in single symbolic sequences and on learning
structure between symbols that occur close to each other. This is in contrast to
the techniques proposed in our work, which searches for patterns that may not
be frequent but are associated with an endpoint in multiple symbolic sequences,
and where the symbols constituting the predictive pattern and the acute event
can be far apart. In this way, the motifs discovered by our algorithms can be
viewed as global patterns, spanning both a subsequence of symbols and an
annotated event that may be variably delayed.

Our analysis of sequential signals is also similar to the use of Markov models
to study systems [Durbin et al. 1998]. Our work differs from a purely Markovian
approach in that we do not attempt to develop a model explaining the data
and focus instead on explicitly identifying predictive elements. Furthermore, in
many cases, including the sudden death study conducted as part of this project,
the regulatory activity may occur well in advance of the event. Developing a
Markov model containing sufficient memory and complexity to handle these
cases would prove to be challenging in such situations.
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A different form of prediction in learning theory is to approach the task in
an online manner and consistently refine a hypothesis based on errors and
temporal differences [Cesa-Bianchi and Lugosi 2006]. This approach is similar
to the inference of prediction rules in that decisions are made on attributes or
features and not individual sequences. Our techniques further differ in that
they attempt to exploit the availability of batch data and do not address the
issue of online learning.

In addition to suggesting methods to discover motifs, we propose subset-
based techniques that can isolate subsets of the data that share common pre-
dictive motifs. For example, in Section 6.5, we discuss how two-stage Gibbs2

can find subpopulations sharing different predictive sequences. This is impor-
tant since the same event may be associated with different causes. We consider
the selection of sequences that share regulatory activity as being internal to
the problem of motif discovery. Specifically, partitioning the data in advance
without information on the specific predictive pattern is difficult—subsets of
the sequences sharing a motif can only be isolated once the motif is known. For
this reason, we address the issue of degeneracy and heterogeneous predictive
patterns as part of motif discovery and tailor our algorithms to automatically
recognize and handle these cases.

A key component of our approach to address motif degeneracy is to randomly
swap symbolic sequences into and out of a working subset. The notion of ran-
domized swaps has also been proposed earlier, in the context of data mining to
assess the significance of mining results on high-dimensional data [Gionis et al.
2006]. The focus in that work is on randomly swapping 0-1 features within a
matrix to create a new matrix with preserved row and column margins that can
be used for testing. The process of random swapping does not attempt to isolate
a subset of features with desired properties but is used to randomly perturb the
matrix instead. Finally, our work is similar to unary classification techniques
[Scholkopf et al. 2001] in that the algorithms proposed do not require the pres-
ence of both positive and negative examples. Instead, they are geared towards
selecting subsequences of labels that can be found across a population in a form
unlikely to occur purely by chance. The goal is to better understand similarities
that can be analyzed for a predictive relationship with the acute event being
considered.

8. SUMMARY AND CONCLUSIONS

In this article, we propose a framework for discovering potentially predictive
activity preceding acute events. We generalize the notion of regulatory mo-
tifs from computational biology and adapt existing algorithms to operate ro-
bustly and efficiently on a broad set of data. We develop and evaluate this
work in the context of physiological signals, detailing the challenges associ-
ated with fitting a motif-detection model to signals other than DNA. We also
describe the performance of subset-based techniques to discover activity associ-
ated with sudden cardiac death, comparing discovered patterns against control
populations comprising normal individuals and those with supraventricular
arrhythmias.
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Our work represents a fully-automated approach for discovering a specific
class of possible precursors: patterns that are sequential in that a given ordering
of different classes is associated with an end result. We impose no restrictions
on the patterns to be discovered, and our tools are able to identify sequences of
arbitrary complexity that occur in a possibly degenerate form across a popula-
tion sharing an event.

A central requirement for the techniques described in this article is that
the data being mined is symbolic. In the context of physiological signals, this
requires transforming continuous waveforms into alphabetical sequences. Cre-
ating a set of labels that can be applied to the data can be achieved in a number
of different ways. In the work described here, we use clinical labels that have a
fixed meaning and can be applied across patients. It is possible that potentially
predictive activity may occur at a more subtle level, where differences within
clinical classes are important. For this reason, an important future direction of
this research is to extend approaches to annotate signals in a patient-specific,
data-derived manner to achieve symbolization.

Finally, it is important to stress that although our initial results on detecting
a predictive pattern associated with sudden cardiac death appear promising,
the small number of patients in the dataset and limited patient histories means
that further investigation on a larger set of ECG signals is necessary.
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