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Noncoding RNAs have emerged as important key players in the cell. Understand-
ing their surprisingly diverse range of functions is challenging for experimental and
computational biology. Here, we review computational methods to analyze non-
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data for novel transcripts and prediction of transcript structures, computational
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INTRODUCTION

Noncoding RNAs (ncRNAs) are transcripts that
are not translated to proteins but act as

functional RNAs. Several well-known ncRNAs such
as transfer RNAs or ribosomal RNAs can be found
throughout the tree of life. They fulfill central
functions in the cell and thus have been studied for a
long time.

However, over the past years a few key discov-
eries have shown that ncRNAs have a much richer
functional spectrum than anticipated.1 The discovery
of microRNAs (miRNAs/miRs) for example changed
our view of how genes are regulated.2,3 Another
surprising observation revealed by high-throughput
methods is that in human 90% of the genome is tran-
scribed at some time in some tissue.4 Although the full
extent and functional consequences of this pervasive
transcription remains highly controversial,5,6 the vast
amount of transcripts produced suggests that many
important ncRNA functions are yet to be discovered.
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In particular, long noncoding RNAs (lncR-
NAs)—transcripts that can be several kilobases in
length, spliced and processed like mRNAs but lack
obvious coding potential—seem to be a rich source
of novel functions.7 All these ncRNAs have been sug-
gested to form a hidden layer of regulation that is
necessary to establish the complexity of eukaryotic
genomes.8

Prokaryotic genomes also contain many sur-
prises. Riboswitches,9 small regulatory RNAs,10 or
completely unknown structured RNAs11 suggest that
ncRNAs also form an important functional layer in
bacteria.

Understanding the function of ncRNAs—in
particular in the age of high-throughput experi-
ments—is clearly not possible without computational
approaches. Algorithms to annotate, organize and
functionally characterize ncRNAs are of increasing
relevance. In this article, we give a broad overview
of programs and resources to analyze many different
aspects of ncRNAs (Figure 1).

STRUCTURAL ANALYSIS

For many RNAs there is a close connection between
structure and function. Having a good model of the
structure of a RNA is thus critical and often the first
clue towards elucidating its function. Determining the
complete three dimensional structure (‘tertiary struc-
ture’) of an RNA is a tedious and time-consuming

© 2012 John Wiley & Sons, Ltd.



Advanced Review wires.wiley.com/rna

FIGURE 1 | Outline of the main topics covered in this article. Many topics overlap, depend on each other or share similar concepts. The most
important of these interconnections are shown by arrows.

undertaking. Computational methods—either com-
pletely de novo or assisted by experimental data—are
therefore routinely used to predict structure models.
A strong focus lies on the prediction of the secondary
structure, i.e. the pattern of intramolecular base-pairs
(A·U, G·C and G·U) typically formed in RNAs.

Secondary Structure
Thermodynamic Folding of Single Sequences
In RNAs, the secondary structural elements are
responsible for most of the overall folding energy and
can be seen as a coarse-grained approximation of the
tertiary structure. This important biophysical property
in combination with the fact that secondary structure
can easily be formalized as a simple graph (Figure 2),
led to secondary structure being widely studied
early on. One of the first attempts to approach the
RNA folding problem (i.e., predicting the secondary
structure from the primary sequence) was by Nussinov
and Jacobson.12 They proposed an algorithm to find
the secondary structure with the maximum number
of base pairs. It is one of the classical examples of
dynamic programming algorithms in computational
biology and all modern variants of folding algorithm
essentially use the same principle (Box 1).

In practice, however, finding the structure with
the maximum number of pairs does not give accu-
rate results. Ideally, we want to find the struc-
ture of minimum folding energy. Since most of the
folding energy in RNAs is contributed by stacking

interactions between neighboring base pairs, counting
single base pairs is not sufficient. Therefore, cur-
rent folding algorithms use a ‘nearest neighbor’ or
also called ‘loop-based’ energy model. A structure
is uniquely decomposed into substructural elements
(stacked bases, hairpin-loops, bulges, interior-loops,
and multi-way-junctions, Figure 2a). The structural
elements are assigned energies which add up to the
total folding energy of the structure (Figure 2b). The
energy values are established empirically and typically
come from systematic melting experiments on small
synthetic RNAs. An up-to-date set of energy parame-
ters is maintained by Douglas Turner’s lab.13,14

A dynamic programming algorithm to find the
minimum free energy (MFE) for this more complex
energy model was proposed by Zuker and Stiegler15

and forms the basis for modern prediction pro-
grams. The most common implementations used are
UNAFold,16 RNAfold of the Vienna RNA package17

and RNAstructure.18 The accuracy of MFE predic-
tions depend on the type of RNA. Although some
RNAs can be predicted with high accuracy, in gen-
eral one has to expect that roughly a third of the
predicted base pairs are wrong and one third of true
base pairs are missed. It is thus important to keep in
mind that even the best currently available prediction
methods only give a rough model of the structure. Ter-
tiary interactions, protein context and other inherent
limitations of the energy model are all sources of
potential errors.
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FIGURE 2 | Principles of RNA structure prediction (a) RNA secondary structure can be represented as an outerplanar graph (right). The backbone
is arranged as a circle and base pairs are represented as arcs. The faces of this graph correspond to different structural elements. This formalization is
the basis for most structure prediction algorithms. Any structure can be uniquely decomposed into these basic elements which are independent from
each other. This allows for efficient folding algorithms based on the ‘dynamic programming’ principle that breaks down the problem into smaller
subproblems (see also Box 1). (b) Example of energy evaluation of a small RNA structure. Thermodynamic folding algorithms assign free energies to
the structural elements. In the example shown, two stacks and a symmetric interior loop stabilize the structure (negative free energy) while the
hairpin loop destabilizes the structure (positive free energy). The total free energy of the structure is the sum of the energy of all structural elements.

BOX 1

DYNAMIC PROGRAMMING

The Dynamic Programming (DP) paradigm is used
for many algorithms related to RNA folding. DP
breaks down a problem in smaller subproblems
to find the overall solution efficiently. Nussinov’s
algorithm is a classical example of a DP
algorithm. Let us assume we want to find the
minimum free energy Ei,j between the positions
i and j of a sequence and already know the
solution for a sequence from i + 1 to j, i.e. a
sequence that is one base shorter. The new base
i can either be unpaired or forms a base-pair
with some position k:

i jj i i+1 j i i+1 k−1 k k+1
|=

The base-pair k divides the problem into
two smaller sub-problems, namely finding the
solution for Ei+1,k−1 and Ek+1,j. We thus can find
the solution using a recursive algorithm:

Eij = min
{

Ei+1,j, min
i+1≤k≤j

{
Ei+1,k−1 + Ek+1,j + βi,k

}}
,

βi,k is the energy contribution for the base-
pair i, k in this simplified energy model.

At room temperature, RNAs usually exist in
an ensemble of different structures and the MFE
structure is not necessarily the biologically relevant
structure. There are different algorithms to predict
suboptimal structures close to the MFE structure.19,20

McCaskill’s algorithm21 allows one to calculate the
partition function over all possible structures and
subsequently the probability of a particular base
pair in the thermodynamic ensemble. Considering
the pair-probability matrix of all possible base pairs
gives a more comprehensive view of the structural
properties of an RNA than just the MFE prediction.
It is also possible to obtain individual structure
predictions from the pair-probability matrix, either by
sampling22 or by finding a structure that maximizes
the expected accuracy considering a weighting factor
between sensitivity and specificity.23,24

RNA Folding Using Probabilistic Models
An alternative to the thermodynamic approach of
RNA folding is a probabilistic approach based on
machine-learning principles. Instead of using energy
parameters, folding parameters can be estimated
from a training set of known structures and are
used to predict structures of unknown sequences.
There are several probabilistic frameworks to accom-
plish parameter estimation and prediction. Stochastic
context-free grammars (SCFGs) are a generalization
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BOX 2

STOCHASTIC CONTEXT FREE GRAMMARS

Context free grammars (CFG) are concepts from
formal language theory. In most simple terms,
a CFG is a set production rules V → w where V
represent a so-called nonterminal symbol that
produces a string of terminal or non-terminal
symbols w. An example of a simple RNA gram-
mar would be S → aSâ|aS|Sa|SS|ε. The gram-
mar has one type of nonterminal symbol S
and one type of terminal symbols a ∈ A, C, G, T
representing the bases. The grammar consists
of production rules for unpaired and paired
bases (aâ represent two complementary bases).
This simple rules allow to produce all possible
RNA secondary structures. A stochastic context
free grammar (SCFG) extends CFGs by assign-
ing probabilities to all production rules. In the
case of our RNA grammar, a full parametrized
SCFG would thus describe the probability dis-
tribution over all structures and sequences.

of Hidden Markov models that are widely used in
bioinformatics (Box 2). SCFGs allow one to con-
sider nested dependencies, a prerequisite to model
RNA structure. They have been used successfully for
homology search problems and consensus structure
prediction (see below). Although SCFGs can be used
for single sequence structure prediction25 they are
not widely used for this problem. CONTRAFOLD,23 an
alternative machine learning approach based on con-
ditional random fields, however, could establish itself
as a serious alternative to thermodynamic methods.
There are also hybrid approaches that try to enhance
the thermodynamic parameters by training on known
structures.26,27

Incorporating Structure Probing Data into
Folding Algorithms
Structure probing experiments typically use enzymatic
or chemical agents that specifically target paired or
unpaired regions.28 Most implementations of thermo-
dynamic folding like UNAfold or RNAfold allow
for the incorporation of this type of information by
restricting the folding to structures consistent with the
experimental constraints. As an alternative, exper-
imental information can also be incorporated as
‘pseudo-energies’ into the folding algorithm enforc-
ing regions to be preferentially paired or unpaired
reflecting the experimental evidence.29–31 Recently,
high-throughput sequencing techniques were used to
scale up structure probing experiments massively.32–34

(a)

(b)

FIGURE 3 | Principles of comparative analysis for RNA structure
prediction. (a) A short sequence that can fold into a hairpin is aligned to
three other sequences with different mutation patterns. Mutated bases
are indicated by a lightning symbol. The affected base pair is shown in
blue, green and red for the case of a consistent mutation, a
compensatory double mutation, or a inconsistent mutation that
destroys the base pair. (b) Sequence based alignment versus structural
alignment. Consensus structure predicted for two aligned sequences.
First, the alignment is optimized to match the sequences resulting in a
poor consensus structure with few conserved base-pairs (green).
Second, the two sequences are aligned to optimize a common structure,
resulting in a much better consensus structure with more conserved
pairs. (All structures are shown in ‘dot/bracket’ notation, in which
base-pairs are indicated by brackets and unpaired positions are shown
as dots.)

Dealing with inherently noisy data of this type turned
out to be challenging and is still an active field of
research.

Secondary Structure Prediction for Homologous
Sequences
Another way to improve secondary structure predic-
tion is to consider homologous sequences from related
species. If two or more sequences share a common
structure but have diverged on the sequence level,
typical base substitution patterns that maintain the
common structure can be observed (Figure 3a). A con-
sistent mutation changes one base (e.g. A·U ↔ G·U)
while compensatory mutations change both bases in
the base pair (e.g. A·U ↔ G·C or C·G ↔ G·C).
Clearly, these patterns provide useful information to
infer a secondary structure.

The simplest way to exploit this signal is
to calculate a mutual information score to find
columns that show highly correlated mutation pat-
terns. This method led to surprisingly accurate struc-
tures for rRNAs as early as 30 years ago.35 As
we rarely have such large datasets of RNAs with
extremely conserved structures it is natural to combine
covariance analysis with classical folding algorithms.
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RNAalifold36 extends Zuker’s folding algorithm to
multiple sequence alignments by averaging the energy
contribution over the sequences and adding covari-
ance information in the form of ‘pseudoenergies’.
A probabilistic alternative is Pfold,37 which uses
a simple stochastic context free grammar combined
with an evolutionary model of sequence evolution
to infer a consensus structure. PetFold38 extends
Pfold by incorporating pair probabilities from ther-
modynamic folding and thus unifies evolutionary
and thermodynamic information. A more recent pro-
gram, TurboFold39 also uses thermodynamic fold-
ing and iteratively refines the energy parameters by
incorporating pair probabilities from homologous
sequences.

Structural Alignment
Even unaligned RNAs can provide more informa-
tion about their common structure than a sin-
gle sequence. Low sequence homology below 60%
sequence identity40 prohibits the sequence alignment-
based approach of the previous section (Figure 3b),
since correct alignment requires information about
the structure. Since structure predictions for single
sequences are unreliable, folding the sequences fol-
lowed by structure-based alignment can also fail.

Therefore, the most successful strategies fold
and align the RNAs simultaneously. The first such
algorithm,41 by Sankoff, simultaneously optimizes the
alignment’s edit distance and the free energies of both
RNA structures applying a loop-based energy model.
However, only recent advances made this strategy
applicable to practical RNA analysis.

The first complete pairwise Sankoff-implemen
tation Dynalign42 implements a loop-based energy
model, but employs a simple banding technique for
increasing efficiency. A further pairwise Sankoff-like
tool is Foldalign.43 Computing a loop-based energy
model during the alignment, these algorithms are
accurate but computationally expensive; in practice,
they compensate this by strong sequence-based
heuristic restrictions.

Several less expensive Sankoff-like algorithms
are based on simplifications introduced by PMcomp.44

PMcomp replaces the loop-based energy model by
assigning ‘pseudo-energies’ to single base pairs. This
reduces the computational overhead significantly. By
computing the pseudoenergies of base pairs from
their probabilities in the structure ensembles of the
single RNAs, accurate information from the loop-
based energy model is fed back into the light-weight
algorithm.

Approaches following this idea are LocARNA,45

foldalignM,46 RAF,47 and LocARNA-P;48 All these

tools additionally employ sparsity in the structure
ensemble of the single sequences.

The sparsified PMcomp-like approaches are
sufficiently fast for multiple alignment and large scale
studies, performing, for example, clustering45,46 and
de novo prediction of structural RNA.49

Prediction with Pseudoknots
Pseudoknotted structures follow the same rules as
other secondary structures, but allow nontree like
configurations, for example, because of an additional
level of nested base pairs or pairing between different
hairpin loops (kissing hairpin) (Figure 4). Pseudoknots
are prevalent in many ncRNAs; still, most algorithms
ignore them for technical reasons: pseudoknot-folding
is computationally expensive and accurate empirical
energy models are missing.

Algorithmic Challenges
The run-time of pseudoknot-free structure predic-
tion grows only with the cube of the sequence
length. Unfortunately, when general pseudoknots are
allowed, the computation time grows much faster,
namely exponentially with the sequence length.50

Consequently, finding exact solutions is intractable
for all but very short RNAs. Note that the ‘principle
of optimality’, which allows dynamic programming
(Box 1) in the pseudoknot-free case, is not applicable
in the case of general pseudoknots. By this princi-
ple, every optimal structure can be composed from
optimal structures of its subsequences.

In practice, often heuristic methods are appli-
cable. Among the numerous approaches are ILM,53

HotKnots,54 KnotSeeker,55 and IPknot.56 ILM53

applies the classic principle of ‘hierarchic folding’; it
constructs a pseudoknotted structure by iteratively
predicting a most likely stem, using pseudoknot-free
prediction, which is then added to the structure. Hot-
Knots54 refines the construction of the pseudoknotted
structure from likely more general secondary struc-
ture elements. TurboKnot57 even predicts conserved
pseudoknots from a set of homologous RNAs. Apply-
ing a topological classification of RNA structures,58

TT2NE59 guarantees to find the best RNA structure
regardless of pseudoknot complexity; however, this
limits the length of treatable sequences.

Other algorithms restrict the types of pseu-
doknots, such that dynamic programming can be
applied.50–52,60–63 These algorithms differ in their
computational complexity and the complexity of con-
sidered structures. Figure 4 shows pseudoknots of
different complexity.

Rivas and Eddy51 proposed the most general
such algorithm. It predicts three-knots (Figure 4c),
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FIGURE 4 | Pseudoknot types. (a) The simplest type
of pseudoknot (H-type) formed by two crossing stems.
The most efficient algorithms predict only this most
common form of pseudoknot. (b) Three-chain or kissing
hairpin. Two hairpin loops are connected by one or
more base pairs. (c) Three-knot. Three stems cross each
other. This configuration is predicted only by the
expensive algorithm by Rivas and Eddy51 (d) Four-chain,
closed by a fifth stem. This complex motif cannot be
predicted by the algorithm of Rivas and Eddy, but would
require an even more costly algorithm. (e) Canonical
pseudoknot. A pseudoknot formed by two perfect stems
of canonical base pairs that are maximally extended,
that is, they cannot be extended further by canonical
base pairs; the figure indicates the latter by the dashed
‘conflict’-arcs between non-canonical base pairs AA,
GA, CA, and CC (from left to right). The most
space-efficient pseudoknot prediction algorithm52

predicts only canonical pseudoknots.

(a)

(b)

(c)

(d)

(e)

but cannot predict more complex pseudoknots such
as the one shown in Figure 4d. Its large time and space
requirements prohibit its application to large scale
data analysis. The most efficient such algorithm52 has
only the same space requirements as pseudoknot-free
prediction; its run-time grows with the fourth power
of the sequence length, adding only a linear factor
over pseudoknot-free folding. However, it predicts
only canonical pseudoknots (Figure 4e), which are
formed by two canonical stems: such stems are (1)
composed of canonical base pairs (2) ‘perfect’, that is,
they do not contain interior loops or bulges, and (3)
maximally extended, that is, they cannot be extended
by canonical base pairs. Further such algorithms are
tailored for specific interesting pseudoknot-classes63

(Figure 4a and b). Möhl et al.64 recently managed to
speed up such algorithms nonheuristically.

Energy Models for Pseudoknots
A further challenge of pseudoknot prediction is
to find an accurate energy model. The established
loop-based energy models for RNA are tailored
for pseudoknot-free structures; to date, there are

no empirical energy parameters for pseudoknotted
structure elements.

Consequently, some algorithms consider only
the simplistic case of base-pair maximization.53,65

Although some authors argue that important entropy
contributions in pseudoknots cannot be covered
by a loop-based energy model,66 most approaches
extend the loop-based energy model for pseudoknot-
loops.51,67

Tertiary Structure
While secondary structure is strongly stabilizing the
three-dimensional structure, the tertiary structure
depends on stabilizing non-canonical base pairs and
van der Waals interactions. Furthermore, pseudoknots
impact the tertiary structure. Therefore, deriving the
tertiary structure in a hierarchic way from predicted
secondary structure is not straightforward.

There are two main ways to model tertiary RNA
structure. One, template-based modeling, employs
homology to other RNAs with known structures.
The other, de novo prediction, computes struc-
tures from physical and knowledge based rules. For
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(a) (b)

FIGURE 5 | Tertiary structure prediction. Example prediction from
the MC-Fold and MC-Sym pipeline.68 (a) Secondary structure
including canonical (bold lines) and noncanonical base-pairs (non-bold
lines) as predicted by MC-Fold. (b) Tertiary structure predicted from
secondary structure (a) by MC-Sym. The prediction (blue) is compared to
the experimental structure (gold).

example, the MC-fold/MC-sym pipeline68 (Figure 5)
assembles fragments of experimentally determined
three-dimensional structures. On the basis of such
structures, the approach builds a library of frequent
small secondary structure loop-motifs, called Nucleic
Cyclic Motifs (NCMs), together with their three-
dimensional configurations. Given a RNA sequence,
MC-Fold constructs probable secondary structures
by merging NCMs; in this process it assigns likely
NCMs to subsequences. MC-sym assigns concrete
3D-structures to the NCMs to generate a consis-
tent 3D structure. The approach has been tested
on 13 RNAs of an average size of 30 nucleotides.
Running several hours per prediction, the known
3D-structures have been reproduced within 2.3 Å at
average.68 Similar to MC-Fold, the recent RNAwolf69

predicts extended secondary structures considering
non-canonical base pairs; the same work reports a
more efficient, dynamic programming-based reimple-
mentation of MC-Fold, which improves parameter
estimation. A more detailed review and a systematic
performance comparison of RNA tertiary structure
prediction programs is provided by Laing et al.70

RNA/RNA Interactions
Many ncRNAs interact with other RNAs by specific
base-pairing; most prominently, miRNAs target
the untranslated regions of mRNAs. Predicting
RNA/RNA interactions can thus elucidate RNA
interaction partners and potential functions.

Most generally, one aims to predict the sec-
ondary structure of the interaction complex of two
RNAs consisting of intramolecular and intermolecular

base-pairs (Figure 6). Alkan et al.71 formalized the
problem and showed that—similar to pseudoknot pre-
diction—it cannot be solved efficiently. Therefore, sev-
eral simplifications and heuristics have been proposed.

Most approaches restrict the possible structures
of the interaction complex to enable efficient algo-
rithms using dynamic programming. Figure 6 shows
interaction complexes from several restriction classes.
The simplest approaches ignore intramolecular base-
pairs and predict only the best set of interacting
base-pairs (Figure 6a); examples are RNAhybrid72

and RNAduplex.73

A more general approach optimizes intra-
and intermolecular base-pairs simultaneously in a
restricted structure space. ‘Co-folding’ of RNAs, for
example implemented by RNAcofold,73 concatenates
the two RNA sequences and predicts a pseudoknot-
free structure for the concatenation. Co-folding leads
to a very efficient algorithm but strongly restricts the
space of possible structures, such that only external
bases can interact (Figure 6b).

The dynamic-programming algorithms71,74 that
predict more general structures (Figure 6c), forbidding
only pseudoknots, crossing interaction, and zig-zags
(Figure 6d), are computationally as expensive as
the most complex efficient pseudoknot prediction
algorithm ;51 they are therefore rarely used in practice,
albeit their efficiency has been improved recently.75

Several fast methods71,76,77 assume that inter-
actions form in two steps: First, the RNA unfolds
partially, which requires certain energy to open the
intramolecular base-pairs. Second, the unfolded, now
accessible, RNA hybridizes with its partner form-
ing energetically favorable intermolecular base-pairs.
RNAup76 computes the energies to unfold each sub-
sequence in the single RNAs and combines the
unfolding energies with the hybridization energies to
approximate the energy of the interaction complex.
IntaRNA77 optimizes this approach and extends it to
screen large data sets for potential interaction targets.

Finally, several approaches predict con-
served interactions between multiple sequence
alignments.78,79

Kinetic Folding
Common structure prediction methods assume that
the functional RNA structure can be identified solely
based on the thermodynamic equilibrium without
considering the dynamics of the folding process.
Although the true impact of the kinetics on functional
RNA structures is still unknown, there are examples
such as RNA switches80 that highlight the importance
of folding kinetics.
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FIGURE 6 | RNA/RNA interactions. (a) Simple
hybridization, no internal structure of RNAs. The
simplest interaction prediction approaches predict
only the hybridization at a single site without
considering internal structure. (b) Hybridization
and restricted internal structure as in the co-folding
model. Interactions can occur at several sites,
however only between external bases. When
concatenating the two interacting RNAs, the
structure of all inter- and intramolecular base-pairs
is pseudoknot-free, such that it can be predicted
from the concatenation by (a variant of) Zuker’s
algorithm. (c) Interaction structure as predictable
by the most complex dynamic programming
algorithms. Such structures are free of
pseudoknots, crossing interactions, and zig-zags
(see d). (d) Zig-zag. Intramolecular stems in each
RNA cover a common interaction as well as
interactions to the outside of the stems.

(a)

(b)

(c)

(d)

Several groups have studied the folding process
of RNAs (reviewed in Refs 66, 83). The RNA folding
process is commonly modeled using energy landscapes
(Figure 7).84 Such landscapes assign energies to single
structures, or states, and define neighborship between
states. RNAlocopt85 enables studying the Boltzmann
ensemble of local optima in an RNA energy landscape.
The folding process iteratively moves from one state
to a neighbor; the move probability depends on the
energy difference. Studying folding by simulation83

is expensive since it requires averaging over many
trajectories. Because the exact model of folding as a
Markov process can be solved only for small systems,
many methods coarse-grain the energy landscape
to enable the analysis of the process. For example
‘barrier-trees’ represent the energy landscape as a
tree of local minima connected by their saddle
points.82 BarMap81 generalizes coarse-graining to
nonstationary scenarios like temperature changes or
co-transcriptional folding.86 predicts RNA folding
pathways based on motion planning techniques from
robotics. Kinefold87 simulates single folding paths
over seconds to minutes for sequences up to 400 bases.

ANNOTATING ncRNAS IN GENOMIC
DATA

Another major challenge in understanding the
function of ncRNAs is to find and annotate them in
complete genomes. We distinguish homology search,
i.e. trying to identify new members of already known
classes of ncRNAs, and de novo prediction with the
aim to discover novel ncRNAs.

De Novo Prediction
Although a general de novo ncRNA finder remains
elusive, some progress has been made in the identifi-
cation of structural RNAs, that is, ncRNAs that rely
on a defined secondary structure for their function.

As a first attempt, one could use normal folding
algorithms such RNAfold and hope to find structural
RNAs to be thermodynamically more stable than the
genomic background. However, although on average
structural RNAs are more stable than expected this
approach is generally not significant enough to reliably
distinguish true structural RNAs from the rest of the
genome.88,89 Comparative approaches that make use
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(c)

(a)
(b)

FIGURE 7 | Kinetic folding pathways. (a) Schematic energy landscape and associated barrier tree. A barrier tree shows the local minima and the
minimum energy barriers between them. (Reprinted with permission from Ref 81. Copyright 2010 RNA Society). (b) Barrier tree of the small RNA xbix.
(c) Exact folding kinetics of xbix starting from the open chain. Probability of local minima over time. While the minimum free energy (MFE) structure is
finally most prominent, other ‘intermediary’ structures (2, 3, and 4) are temporarily more probable.(Reprinted with permission from Ref 82. Copyright
2004 IOP Publishing Ltd.)

of evolutionary signatures in alignments of related
sequences can improve the signal considerably.

The first program that used pairwise alignments
to find structured RNAs was QRNA.90 Based on
stochastic context free grammars it could successfully
identify novel ncRNAs in bacteria.91,92 MSARIwas the
first algorithm applying the idea of finding conserved
RNA structures to multiple sequence alignments.93

To screen larger genomes higher accuracy was
necessary. RNAz94 analyzes multiple sequence align-
ments and combines evidence from structural con-
servation and thermodynamic stability. EvoFold95

searches for conserved secondary structures in multi-
ple alignments using a phylogenetic stochastic context-
free grammar. Both programs were used to map
potential RNA secondary structures in the human95,96

and many other genomes (e.g., Ref 97).

Another approach that was used to detect con-
served RNA secondary structures in bacteria98 is
implemented in CMFinder.99 CMFinder builds a
covariance model from a set of unaligned sequences
by iterative optimization.

Homology Search
Pure sequence based search algorithms like BLAST
quickly reach their limits when used to identify distant
homologs of RNAs.100,101

A solution is to include structure information in
the search. Several motif description languages have
been developed that allow one to manually specify
sequence and structure properties and subsequently
use these patterns to search databases or genomic data.
Examples of such descriptor based search algorithm
are RNAMOT102 and RNAmotif.103
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Another class of programs automatically create a
description of a structural RNA from a structure anno-
tated alignment. The most commonly used program of
this class is INFERNAL that uses covariance models, a
full probabilistic description of an RNA family based
on stochastic context-free grammars.104 The Rfam
database (see below) is based on INFERNAL and pro-
vides a curated collection of such covariance models.

In addition to these generic homology search
tools, there are several specialized programs for
finding ncRNAs of a particular family such as
tRNAs,105 rRNAs,106 snoRNAs,107–109 tmRNAs,110

signal recognition particle RNAs.111

Coding Potential
A complication during ncRNA annotation is the fact
that many transcripts appear to be noncoding but
in fact have the potential to code for a protein.112

For example, short open reading frames can be easily
missed and biological ambiguities of transcripts that
act both on the level of the RNA and protein can
make the annotation difficult.113,114 A good overview
of different methods to assess the coding potential of
RNAs is given by Frith et al. The benchmark study115

found comparative analysis to be one of the most
promising approaches. Purifying selection on the pro-
tein sequence turned out to be a reliable indicator of
coding potential and several programs were developed
to exploit this feature.90,116,117

MINING RNA-SEQ DATA FOR
NONCODING RNA TRANSCRIPTS

The advent of high-throughput RNA sequencing has
provided a robust platform for the development
and expansion of several transcriptome-level analy-
ses. RNA-seq is the highly parallelized process of
sequencing individual cDNA fragments created from
a population of RNA molecules. Here we discuss
three challenges that must be addressed to mine RNA-
seq data for noncoding transcripts: (1) read mapping
to a reference genome (or transcriptome) (2) tran-
scriptome reconstruction from mapped reads, and (3)
quantification of transcript levels.

Short Read Mapping
The first stage in short-read sequencing data analysis
is the alignment of the sequenced reads to a refer-
ence genome. The algorithmic details of short read
mapping is beyond the scope of this review. Here,
it is important to note that transcript reconstruction
requires so-called ‘spliced aligners’. Spliced aligners

such as TopHat,118 GSNAP,119 and SpliceMap 120

identify and map short reads that span exon–exon
junctions. From these spliced alignments novel splic-
ing events and subsequently new transcript models
can be identified.

Reconstruction of Transcript Models
A key advantage of RNA-seq over traditional forms
of RNA expression analysis is the fact that little to
no a priori information on the presence of an RNA
sequence is required and, in principle, all required
information can be learned directly from the data. This
advantage, however, is dependent on the ability to re-
construct a transcriptome fragmented into millions
of short reads. Common approaches to solving this
jigsaw puzzle-like problem focus on one of two
different strategies: (1) reference-guided assembly, or
(2) de novo assembly (Figure 8).

With a reference-guided assembly, reads are ini-
tially aligned using a spliced aligner to a reference
genome sequence. The requirement for gapped align-
ments allows for discovery of putative splice junctions
at the locations in which a read maps to the ref-
erence with a gap across an appropriately sized
genomic interval. The two most popular reference-
guided transcriptome assembly tools, Scripture121

and Cufflinks,122 both treat these gaps as candidate
splice junctions, and use this information to construct
a graph representation of the transcriptome. In the
case of Scripture, the graph represents the exonic
connectivity potential of the reference genome. Cuf-
flinks creates independent graph models for each
independent genomic interval assumed to be a putative
‘gene’. In either case, the various paths through these
connectivity graphs represent independent transcript
isoforms. Scripture will attempt to identify all pos-
sible paths through the graph that can be explained by
the mapped reads for a given gene and in this regard
is useful for identifying lowly expressed isoforms,
but tends to produce more noise in highly spliced
structures. In contrast, Cufflinks produces a set of
isoforms that represent the most parsimonious paths
that can explain the given mapped reads, which may
not report some redundant (but true) isoforms, but
does not overburden the results with false positives.
Additionally, Cufflinks estimates the read cover-
age across the paths to assist the selection of the most
parsimonious isoforms. The result of either of these
two approaches is a reconstructed transcriptome, the
detail of which is supported by the read sequences,
abundance, and mappability to a reliable reference.

In contrast to these reference-guided approaches,
Velvet123 and transABySS 124 use the short-read

© 2012 John Wiley & Sons, Ltd.



WIREs RNA Computational analysis of noncoding RNAs

FIGURE 8 | Reconstructing transcript models from RNA-seq data. Two splice isoforms of RNAs are shown for which the RNA-seq experiment
generated short sequence fragments. One approach (left) to reconstruct the transcript is mapping the fragments to a reference genome. Spliced reads
that span exons boundaries can be used to infer the connectivity graph. The paths through this graph correspond to the different isoforms.
Alternatively, the transcripts can be re-constructed by de novo assembly of the reads into transcripts (right). If available, the assembled RNA
transcripts can be mapped to a reference genome afterwards to obtain the intron-exon structure of the isoforms.

sequences directly and attempt to construct contig-like
transcripts.124 This approach tends to be significantly
more computationally intensive, but is essential in
species that do not have a reliable reference genome,
or in the case when the expected transcriptome can
deviate significantly from the reference genome due to
rearrangements.

Quantification and Differential Expression
In RNA-Seq, the number of individual sequenced
fragments from a given transcript is used as a proxy
for its abundance. Determinations of expression level
can be coarsely determined at the gene-level125,126

using a pseudomodel that consists of either the
most-abundant isoform model, an intersection model
quantifying only the regions present in all predicted
isoforms, or a union model. The intersection model
has been shown to to reduce the ability to accurately
determine differential expression and the union model
can underestimate expression for those genes with
alternative splicing.122,127 More accurately, gene-level
estimates can be determined as the sum of isoform-
level abundance estimates122,128 involving a likelihood

function to model the various effects encountered in
the sequencing process.129 The result of fitting these
models to the data is a maximum likelihood estimate
of the isoform-level abundances for each gene. Gene-
level abundance estimates are easily determined by
summing the expression levels of individual isoforms.

RNA-seq expression values must be normal-
ized to correct for inherent biases in the data.
The ‘Reads Per Kilobase of transcript per Million
mapped’ (RPKM) has emerged as a standard metric
for reporting of estimated abundance levels. This met-
ric has the advantage of correcting for the two main
sources of variability in RNA-seq data: the length of
the transcript, and the depth of the libraries.

The robust quantification of transcript levels
also allows one to study differential expression. Since
most gene-level projections of abundance estimation
result in a single RPKM value for each gene, it would
be reasonable to directly use most of the many dif-
ferential expression tests that have been developed
for microarray analysis over the past few years.
There are, however, additional benefits that can be
gained from using RNA-seq data such as the ability
to derive a distribution of abundance estimates from
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a given sample or set of samples. Short read map-
ping to a given genomic interval can be considered
a counting problem, and many differential expres-
sion analyses initially attempted to fit read counts
to either Poisson or Binomial distributions to deter-
mine enriched transcripts. These methods, however,
fail to incorporate any information about biological
variability. Several more recent applications such as
Cuffdiff,122 DESeq,130 and EdgeR 131 incorpo-
rate variance information from biological replicates in
their differential expression models leading to more
rigorous statistics.

miRNAs

miRNAs are short endogenous regulatory non-coding
RNAs found in eukaryotic cells, whose primary
function is to post-transcriptionally repress genes.132

miRNAs inhibit translation and promote mRNA
degradation via sequence-specific binding to the 3′
UTR regions and coding sequences.133–135 They are
produced from hairpin precursors (pri-miRNAs) that
are processed by Drosha to form a pre-miR hairpin
and then by Dicer to generate one or more 18- to
23-nt mature miRNAs.136 Mature miRNAs are then
incorporated into RISC where they hybridize with
target sites of the mRNA, which are complementary
to the miRNA seed (positions 2–8), leading to post-
transcriptional repression. Since their discovery, there
has been much interest in the computational identifi-
cation of miRNAs at a genome wide level using some
combination of evolutionary conservation, hairpin
structure, thermodynamic stability, genomic context,
and more recently the presence of the mature miRNA
in sequencing data.137

Identification of miRNAs
Evolutionary Conservation
Some of the first approaches such as miRScan and
snarloop use conservation and similarity to known
miRNAs for the prediction new examples.138,139

Other approaches such as miRSeeker incorpo-
rate miRNA-specific patterns of conservation, such
as stronger conservation in the hairpin stem com-
pared to the loop.140 Additionally, patterns of con-
servation of target sites have been used to iden-
tify novel miRNAs141 and to refine annotations of
known miRNAs.142 Other approaches combine both
sequence and structural alignments to find miRNA
homologs.143,144

Structural Properties
The secondary structure and thermodynamic stability
are important features for the prediction of miRNAs,

especially when they are not conserved or orthologs
do not exist in known species. Because miRNAs
need to form stable hairpins for their processing,
many studies have used structural features for their
prediction. It has been demonstrated that miRNAs are
significantly more stable than randomized sequences
of the same nucleotide or dinucleotide composition,145

and many studies have used programs like RNAz to
predict novel miRNAs based on this characteristic
feature.146,147 Other studies have developed machine
learning approaches that train classifiers on known
miRNAs and subsequently identify novel, and in many
cases nonconserved, miRNAs.148–150

Genomic Context
Other approaches have looked for features in the
surrounding genomic context for the prediction of
novel miRNAs and for refining other predictions.
Some early work helped to filter predictions with a
characteristic motif upstream of and patterns of con-
servation flanking the pre-miR.151 Other studies have
used the fact that miRNAs tend to reside within poly-
cistronic clusters of more than one miR to identify
novel miRNAs.3,152 Some approaches also make use
of the fact that regions proximal to miRNAs tend to be
devoid of other non-miR small RNAs and when they
are flanked by other small RNAs such as miRNA off-
set RNAs (moRs) the separation from mature miRNA
sequences is minimal.153

Next Generation Sequencing
The analysis of the sequencing of size-selected cDNA
libraries has proved to be the most reliable method for
the identification of novel miRNAs, in most instances
coupled with other features such as structure and
conservation to enhance predictions, because it pro-
vides validation that the mature sequence is expressed.
In addition to novel miRNAs, the analysis of high-
throughput sequencing data of small RNAs has led to
the elucidation of many other classes of small RNAs
including endogenous siRNAs,154 piRNAs,155,156 and
moRs 157 among others. There are now a few publicly
available software tools for the prediction of miR-
NAs from high-throughput sequencing data such as
miRDeep, MIReNA, and miRTRAP.153,158,159

miRNA Target Prediction
miRNA target prediction is another lively area of
computational analysis related to miRNAs. Early
approaches such as targetScan identify evolution-
ary conserved seed matches and later approaches
such as PicTar have incorporated target site
stability.155,160 The topic is related to the problem of
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FIGURE 9 | Growth of miRBase and Rfam over the past 8 years. For miRBase the number of miRNAs are shown, for Rfam the number of structure
families and the number of sequences found to be member of an Rfam family. (The drop of the number of Rfam sequences in 2011 is the result of the
re-organization of some large families and the elimination of pseudogenes.)

predicting RNA/RNA interactions, discussed above.
For a comprehensive review on target prediction, see
Bartel.161

DATABASES

There are many databases related to ncRNAs and we
cannot cover all of them here. A more specialized
review162 and the yearly database issue of Nucleic
Acids Research163 are good resources to get a more
detailed overview.

There are many highly specialized databases that
collect RNAs of a specific class. Basically for all well
known ‘classical’ RNAs like tRNAs, rRNAs, snoR-
NAs, SRP RNAs, tmRNAs, group I or II introns a
database is available.162

All newly identified ncRNA sequences are usu-
ally deposited in general sequence database such
as Genbank. However, typically they are not sys-
tematically annotated in these databases and con-
sequently a few other databases have emerged
that systematically collect ncRNAs (NONCODE,164

RNAdb165 fRNAdb166 lncRNAdb167).

Rfam is an important resource for structured
RNAs and also includes structured regulatory ele-
ments in mRNAs.168 It collects hand curated covari-
ance models (see above) that are used to systematically
search sequence databases for new members. As of
writing this review, Rfam contains 1973 families with
a total of 2,756,313 members (Figure 9). All RNA
families in Rfam are manually annotated.

The most extensive database for miRNA
sequences, hairpins, and target sites is miRBase (http://
www.mirbase.org).169 miRBase has seen rapid growth
over the past few years (Figure 9) and is the official
repository and naming authority for newly discovered
miRNAs. Other related databases include Tarbase,
which is a database of experimentally verified target
sites,170 and miR2Disease, which is a database that
maintains a manually curated set of disease associated
miRNA target sites.171

CONCLUSIONS AND OUTLOOK

The wide variety of topics covered in this paper
reflects the increasing complexity of the field. It also
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clearly demonstrates the interdisciplinary effort that
is necessary to address these problems. It is safe
to predict that computational problems related to
ncRNAs will remain challenging for the coming
years. In particular elucidating the functions of lin-
cRNAs will require new approaches. Many methods
for structural analysis, for example, were developed
for rather short structured ncRNAs and cannot be
directly applied to lncRNAs that can be kilobases
in length. Prediction of long range intramolecular
interactions within lncRNAs or prediction of inter-
molecular RNA/RNA or RNA/DNA interactions of
lncRNAs will require extensions and improvements

of established algorithms. Also the problem of pre-
dicting protein–RNA interactions will be of high
relevance given the increasing number of examples
of lincRNAs that act as scaffolds for protein com-
plexes. Also more accurate and efficient analysis of
high-throughput data will be a challenge for the field.
We have mentioned analysis of RNA-seq data, but
next generation sequencing can also used for a vari-
ety of other ncRNA related problems such as high
throughput RNA secondary structure probing or map-
ping RNA/protein interactions. Also new approaches
to organize ncRNA data will be important and there
is need for new centralized databases and specialized
resources.172
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145. Bonnet E, Wuyts J, Rouzé P, Van de Peer Y. Evidence
that microRNA precursors, unlike other non-coding
RNAs, have lower folding free energies than random
sequences. Bioinformatics 2004, 20:2911–2917.

146. Washietl S, Hofacker I, Lukasser M, Hüttenhofer A,
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